Boundary-Layer Meteorology

, Volume 165, Issue 2, pp 333–348 | Cite as

Nocturnal Near-Surface Temperature, but not Flow Dynamics, can be Predicted by Microtopography in a Mid-Range Mountain Valley

  • Lena Pfister
  • Armin Sigmund
  • Johannes Olesch
  • Christoph K. Thomas
Research Article


We investigate nocturnal flow dynamics and temperature behaviour near the surface of a 170-m long gentle slope in a mid-range mountain valley. In contrast to many existing studies focusing on locations with significant topographic variations, gentle slopes cover a greater spatial extent of the Earth’s surface. Air temperatures were measured using the high-resolution distributed-temperature-sensing method within a two-dimensional fibre-optic array in the lowest metre above the surface. The main objectives are to characterize the spatio-temporal patterns in the near-surface temperature and flow dynamics, and quantify their responses to the microtopography and land cover. For the duration of the experiment, including even clear-sky nights with weak winds and strong radiative forcing, the classical cold-air drainage predicted by theory could not be detected. In contrast, we show that the airflow for the two dominant flow modes originates non-locally. The most abundant flow mode is characterized by vertically-decoupled layers featuring a near-surface flow perpendicular to the slope and strong stable stratification, which contradicts the expectation of a gravity-driven downslope flow of locally produced cold air. Differences in microtopography and land cover clearly affect spatio-temporal temperature perturbations. The second most abundant flow mode is characterized by strong mixing, leading to vertical coupling with airflow directed down the local slope. Here variations of microtopography and land cover lead to negligible near-surface temperature perturbations. We conclude that spatio-temporal temperature perturbations, but not flow dynamics, can be predicted by microtopography, which complicates the prediction of advective-heat components and the existence and dynamics of cold-air pools in gently sloped terrain in the absence of observations.


Distributed temperature sensing Fibre optics Flow dynamics Nocturnal near-surface temperature Stable boundary layer 



This research was partially supported by the National Science Foundation CAREER award AGS 0955444. The fibre-optics instrument was provided by the Center for Transformative Environmental Monitoring Programs (CTEMPS) funded by the National Science Foundation, award EAR 0930061. The authors thank Ronny Leinweber (Deutsche Wetterdienst) for making the radar wind-profiler data available, as well as Wolfgang Babel and Gerhard Müller for assisting during the experimental design and set-up.


  1. Anstey TH, Weiss GM, Watt AW, Wilcox JC, Sprout PN (1959) Relation of soil, temperature and topography to fruit growing in Summerland, British Columbia. Can J Plant Sci 39(3):297–315CrossRefGoogle Scholar
  2. Banta RM, Darby LS, Fast JD, Pinto JO, Whiteman CD, Shaw WJ, Orr BW (2004) Nocturnal low-level jet in a mountain basin complex. Part I: evolution and effects on local flows. J Appl Meteorol 43(10):1348–1365. doi: 10.1175/JAM2142.1 CrossRefGoogle Scholar
  3. Betts AK, Ball JH, Beljaars ACM, Miller MJ, Viterbo PA (1996) The land surface-atmosphere interaction: a review based on observational and global modeling perspectives. J Geophys Res 101(D3):7209–7225. doi: 10.1029/95JD02135 CrossRefGoogle Scholar
  4. Bodine D, Klein PM, Arms SC, Shapiro A (2009) Variability of surface air temperature over gently sloped terrain. J Appl Meteorol Climatol 48(6):1117–1141. doi: 10.1175/2009JAMC1933.1 CrossRefGoogle Scholar
  5. Clements CB, Whiteman CD, Horel JD (2003) Cold-air-pool structure and evolution in a mountain basin : Peter Sinks, Utah. J Appl Meteorol 42(6):752–768CrossRefGoogle Scholar
  6. Courault D, Drobinski P, Brunet Y, Lacarrere P, Talbot C (2007) Impact of surface heterogeneity on a buoyancy-driven convective boundary layer in light winds. Boundary-Layer Meteorol 124(3):383–403. doi: 10.1007/s10546-007-9172-y CrossRefGoogle Scholar
  7. Darby LS, Allwine KJ, Banta RM (2006) Nocturnal low-level jet in a mountain basin complex. Part II: transport and diffusion of tracer under stable conditions. J Appl Meteorol Climatol 45(5):740–753. doi: 10.1175/JAM2367.1 CrossRefGoogle Scholar
  8. Doyle JD, Jiang Q, Smith RB, Grubišić V (2011) Three-dimensional characteristics of stratospheric mountain waves during T-REX. Mon Weather Rev 139(1):3–23. doi: 10.1175/2010MWR3466.1 CrossRefGoogle Scholar
  9. Foken T (2008) Local cold-air flows. Micrometeorology, 2nd edn. Springer, Berlin, pp 228–230Google Scholar
  10. Gustavsson T, Karlsson M, Bogren J, Lindqvist S (1998) Development of temperature patterns during clear nights. J Appl Meteorol 37(6):559–571. doi: 10.1175/1520-0450(1998) 037<0559:DOTPDC>2.0.CO;2 CrossRefGoogle Scholar
  11. Keller CA, Huwald H, Vollmer MK, Wenger A, Hill M, Parlange MB, Reimann S (2011) Fiber optic distributed temperature sensing fo the determination of the nocturnal atmospheric boundary layer height. Atmos Meas Tech 4(1):1–7. doi: 10.5194/amt-4-1-2011 Google Scholar
  12. Kuttler W, Barlag AB, Roßmann F (1996) Study of the thermal structure of a town in a narrow valley. Atmos Environ 30(3):365–378CrossRefGoogle Scholar
  13. Lareau NP, Crosman E, Whiteman CD, Horel JD, Hoch SW, Brown WOJ, Horst TW (2013) The persistent cold-air pool study. Bull Am Meteorol Soc 94(1):51–63. doi: 10.1175/BAMS-D-11-00255.1 CrossRefGoogle Scholar
  14. Mahrt L (2017) Stably stratified flow in a shallow valley. Boundary-Layer Meteorol 162(1):1–20. doi: 10.1007/s10546-016-0191-4,
  15. Mahrt L, Vickers D, Nakamura R, Soler MR, Sun J, Burns S, Lenschow DH (2001) Shallow drainage flows. Boundary-Layer Meteorol 101(2):243–260. doi: 10.1023/A:1019273314378 CrossRefGoogle Scholar
  16. Mahrt L, Thomas CK, Prueger JH (2009) Space time structure of mesoscale motions in the stable boundary layer. Q J R Meteorol Soc 135(638):67–75. doi: 10.1002/qj.348
  17. Mahrt L, Thomas C, Richardson S, Seaman N, Stauffer D, Zeeman M (2013) Non-stationary generation of weak turbulence for very stable and weak-wind conditions. Boundary-Layer Meteorol 147(2):179–199. doi: 10.1007/s10546-012-9782-x CrossRefGoogle Scholar
  18. Mahrt L, Sun J, Oncley SP, Horst TW (2014) Transient cold air drainage down a shallow valley. J Atmos Sci 71(7):2534–2544. doi: 10.1175/JAS-D-14-0010.1 CrossRefGoogle Scholar
  19. Meybeck M, Green P, Vörösmarty C (2001) A new typology for mountains and other relief classes. Mt Res Dev 21(1):34–45. doi: 10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2
  20. Minder JR, Letcher TW, Campbell LS, Veals PG, Steenburgh WJ (2015) The evolution of lake-effect convection during landfall and orographic uplift as observed by profiling radars. Mon Weather Rev 143(11):4422–4442. doi: 10.1175/MWR-D-15-0117.1 CrossRefGoogle Scholar
  21. Schertzer WM, Rouse WR, Blanken PD, Walker AE (2003) Over-lake meteorology and estimated bulk heat exchange of Great Slave Lake in 1998 and 1999. J Hydrometeorol 4(4):649–659. doi: 10.1175/1525-7541(2003)004<0649:OMAEBH>2.0.CO;2 CrossRefGoogle Scholar
  22. Selker JS, Thévenaz L, Huwald H, Mallet A, Luxemburg W, van de Giesen N, Stejskal M, Zeman J, Westhoff M, Parlange MB (2006) Distributed fiber-optic temperature sensing for hydrologic systems. Water Resour Res 42(12). doi: 10.1029/2006WR005326
  23. Sigmund A, Pfister L, Sayde C, Thomas CK (2016) Quantitative analysis of the radiation error for aerial coiled fiberoptic distributed temperature sensing deployments using reinforcing fabric as support structure. Atmos Meas Tech Discuss. doi: 10.5194/amt-2016-266
  24. Silcox GD, Kelly KE, Crosman ET, Whiteman CD, Allen BL (2012) Wintertime PM2.5 concentrations during persistent, multi-day cold-air pools in a mountain valley. Atmos Environ 46:17–24. doi: 10.1016/j.atmosenv.2011.10.041 Google Scholar
  25. Soler M, Infante C, Buenestado P, Mahrt L (2002) Observations of nocturnal drainage flow in a shallow gully. Boundary-Layer Meteorol 105(2):253–273. doi: 10.1023/A:1019910622806 CrossRefGoogle Scholar
  26. Thomas CK (2011) Variability of sub-canopy flow, temperature, and horizontal advection in moderately complex terrain. Boundary-Layer Meteorol 139(1):61–81. doi: 10.1007/s10546-010-9578-9 CrossRefGoogle Scholar
  27. Thomas CK, Kennedy AM, Selker JS, Moretti A, Schroth MH, Smoot AR, Tufillaro NB, Zeeman MJ (2012) High-resolution fibre-optic temperature sensing: a new tool to study the two-dimensional structure of atmospheric surface-layer flow. Boundary-Layer Meteorol 142(2):177–192. doi: 10.1007/s10546-011-9672-7 CrossRefGoogle Scholar
  28. Whiteman CD (2000) The daily cycle of slope and along-valley winds and temperature structure, chap 11.1. In: mountain meteorology: fundamentals and applications. Oxford University Press, Oxford, pp 171–174Google Scholar
  29. Whiteman CD, Muschinski A, Zhong S, Fritts D, Hoch SW, Hahnenberger M, Yao W, Hohreiter V, Behn M, Cheon Y, Clements CB, Horst TW, Brown WOJ, Oncley SP (2008) Metcrax 2006. Bull Am Meteorol Soc 89(11):1665–1680. doi: 10.1175/2008BAMS2574.1 CrossRefGoogle Scholar
  30. Zeeman MJ, Selker JS, Thomas CK (2015) Near-surface motion in the nocturnal, stable boundary layer observed with fibre-optic distributed temperature sensing. Boundary-Layer Meteorol 154(2):189–205. doi: 10.1007/s10546-014-9972-9 CrossRefGoogle Scholar
  31. Zheng Y, Kumar A, Niyogi D (2015) Impacts of land atmosphere coupling on regional rainfall and convection. Clim Dyn 44(9–10):2383–2409. doi: 10.1007/s00382-014-2442-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Micrometeorology GroupUniversity of BayreuthBayreuthGermany

Personalised recommendations