Skip to main content
Log in

Evaluation of Density Corrections to Methane Fluxes Measured by Open-Path Eddy Covariance over Contrasting Landscapes

Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide \((\hbox {CO}_{2})\) fluxes, but less attention has been paid to evaluating these corrections for methane \((\hbox {CH}_{4})\) fluxes. We measured \(\hbox {CH}_{4}\) fluxes with open-path sensors over a suite of sites with contrasting \(\hbox {CH}_{4}\) emissions and energy partitioning, including a pavement airfield, two negligible-flux ecosystems (drained alfalfa and pasture), and two high-flux ecosystems (flooded wetland and rice). We found that density corrections successfully re-zeroed fluxes in negligible-flux sites; however, slight overcorrection was observed above pavement. The primary impact of density corrections varied over negligible- and high-flux ecosystems. For negligible-flux sites, corrections led to greater than 100% adjustment in daily budgets, while these adjustments were only 3–10% in high-flux ecosystems. The primary impact to high-flux ecosystems was a change in flux diel patterns, which may affect the evaluation of relationships between biophysical drivers and fluxes if correction bias exists. Additionally, accounting for density effects to high-frequency \(\hbox {CH}_{4}\) fluctuations led to large differences in observed \(\hbox {CH}_{4}\) flux cospectra above negligible-flux sites, demonstrating that similar adjustments should be made before interpreting \(\hbox {CH}_{4}\) cospectra for comparable ecosystems. These results give us confidence in \(\hbox {CH}_{4}\) fluxes measured by open-path sensors, and demonstrate that density corrections play an important role in adjusting flux budgets and diel patterns across a range of ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baldocchi D (2014) Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—the state and future of the eddy covariance method. Glob Chang Biol 20:3600–3609. doi:10.1111/gcb.12649

    Article  Google Scholar 

  • Baldocchi D, Knox S, Dronova I, Verfaillie J, Oikawa P, Sturtevant C, Matthes JH, Detto M (2016) The impact of expanding flooded land area on the annual evaporation of rice. Agric For Meteorol 223:181–193. doi:10.1016/j.agrformet.2016.04.001

    Article  Google Scholar 

  • Chamberlain SD, Boughton EH, Sparks JP (2015) Underlying ecosystem emissions exceed cattle-emitted methane from subtropical lowland pastures. Ecosystems 18:933–945. doi:10.1007/s10021-015-9873-x

    Article  Google Scholar 

  • Chamberlain SD, Gomez-Casanovas N, Walter MT, Boughton EH, Bernacchi CJ, DeLucia EH, Groffman PM, Keel EW, Sparks JP (2016) Influence of transient flooding on methane fluxes from subtropical pastures. J Geophys Res G Biogeosci 121:965–977. doi:10.1002/2015JG003283

    Article  Google Scholar 

  • Chamberlain SD, Groffman PM, Boughton EH, Gomez-Casanovas N, DeLucia EH, Bernacchi CJ, Sparks JP (2017) The impact of water management practices on subtropical pasture methane emissions and ecosystem service payments. Ecol Appl. doi:10.1002/eap.1514

    Google Scholar 

  • Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Advances in agronomy. Elsevier, Atlanta, pp 1–63

    Google Scholar 

  • Detto M, Montaldo N, Albertson JD, Mancini M, Katul GG (2006) Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour Res 42:W08419. doi:10.1029/2005WR004693

    Article  Google Scholar 

  • Detto M, Katul GG (2007) Simplified expressions for adjusting higher-order turbulent statistics obtained from open path gas analyzers. Boundary-Layer Meteorol 122:205–216. doi:10.1007/s10546-006-9105-1

    Article  Google Scholar 

  • Detto M, Baldocchi D, Katul GG (2010) Scaling properties of biologically active scalar concentration fluctuations in the atmospheric surface layer over a managed peatland. Boundary-Layer Meteorol 136:407–430. doi:10.1007/s10546-010-9514-z

    Article  Google Scholar 

  • Detto M, Verfaillie J, Anderson F, Xu L, Baldocchi D (2011) Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method. Agric For Meteorol 151:1312–1324. doi:10.1016/j.agrformet.2011.05.014

    Article  Google Scholar 

  • Foken T, Leuning R, Oncley SR, Mauder M, Aubinet M (2012) Corrections and data quality control. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 85–131

    Chapter  Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105. doi:10.1016/0168-1923(95)02248-1

    Article  Google Scholar 

  • Fuehrer PL, Friehe CA (2002) Flux corrections revisited. Boundary-Layer Meteorol 102:415–457. doi:10.1023/A:1013826900579

    Article  Google Scholar 

  • Ham JM, Heilman JL (2003) Experimental test of density and energy-balance corrections on carbon dioxide flux as measured using open-path eddy covariance. Agron J 95:1393–1403. doi:10.2134/agronj2003.1393

    Article  Google Scholar 

  • Hatala JA, Detto M, Sonnentag O, Deverel SJ, Verfaillie J, Baldocchi DD (2012) Greenhouse gas (\(\text{ CO }_{2}\), \(\text{ CH }_{4}\), \(\text{ H }_{2}\text{ O }\)) fluxes from drained and flooded agricultural peatlands in the Sacramento–San Joaquin Delta. Agric Ecosyst Environ 150:1–18. doi:10.1016/j.agee.2012.01.009

    Article  Google Scholar 

  • Hatala JA, Detto M, Baldocchi DD (2012b) Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophys Res Lett 39:1–5. doi:10.1029/2012GL051303

    Article  Google Scholar 

  • Hsieh CI, Katul G, Chi T (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772

    Article  Google Scholar 

  • Hütsch BW (2001) Methane oxidation in non-flooded soils as affected by crop production—invited paper. Eur J Agron 14(4):237–260

    Article  Google Scholar 

  • Iwata H, Kosugi Y, Ono K, Mano M, Sakabe A, Miyata A, Takahashi K (2014) Cross-validation of open-path and closed-path eddy covariance techniques for observing methane fluxes. Boundary-Layer Meteorol 151:95–118. doi:10.1007/s10546-013-9890-2

    Article  Google Scholar 

  • Jones SK, Famulari D, Di Marco CF, Nemitz E, Skiba UM, Rees RM, Sutton AM (2011) Nitrous oxide emissions from managed grassland: a comparison of eddy covariance and static chamber measurements. Atmos Meas Tech 4:2179–2194. doi:10.5194/amt-4-2179-2011

    Article  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Le Quéré C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson I, Spahni R, Steele P, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823. doi:10.1038/ngeo1955

    Article  Google Scholar 

  • Knox SH, Matthes JH, Sturtevant C, Oikawa PY, Verfaillie J, Baldocchi D (2016) Biophysical controls on interannual variability in ecosystem-scale \(\text{ CO }_{2}\) and \(\text{ CH }_{4}\) exchange in a California rice paddy. J Geophys Res Biogeosci 121:978–1001. doi:10.1002/2015JG003247

    Article  Google Scholar 

  • Knox SH, Sturtevant C, Matthes JH, Koteen L, Verfaillie J, Baldocchi D (2015) Agricultural peatland restoration: Effects of land-use change on greenhouse gas (\(\text{ CO }_{2}\) and \(\text{ CH }_{4})\) fluxes in the Sacramento-San Joaquin Delta. Glob Chang Biol 21:750–765. doi:10.1111/gcb.12745

    Article  Google Scholar 

  • Kondo F, Tsukamoto O (2008) Evaluation of Webb correction on \(\text{ CO }_{2}\) flux by eddy covariance technique using open-path gas analyzer over asphalt surface. J Agric Meteorol 64:1–8

    Article  Google Scholar 

  • Kowalski AS (2006) Comment on “An alternative approach for \(\text{ CO }_{2}\) flux correction caused by heat and water vapour transfer”. Boundary-Layer Meteorol 120:353–355. doi:10.1007/s10546-005-9042-4

    Article  Google Scholar 

  • Kramm G, Dlugi R, Lenschow DH (1995) A re-evaluation of the Webb correction using density-weighted averages. J Hydrol 166:283–292. doi:10.1016/0022-1694(94)05088-F

    Article  Google Scholar 

  • Lee X, Massman WJ (2011) A perspective on thirty years of the Webb, Pearman and Leuning density corrections. Boundary-Layer Meteorol 139:37–59. doi:10.1007/s10546-010-9575-z

    Article  Google Scholar 

  • Leuning R (2007) The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows. Boundary-Layer Meteorol 123:263–267. doi:10.1007/s10546-006-9138-5

    Article  Google Scholar 

  • Leuning R, Denmead OT, Lang ARG, Ohtaki E (1982) Effects of heat and water vapor transport on eddy covariance measurement of \(\text{ CO }_{2}\) fluxes. Boundary-Layer Meteorol 23:209–222. doi:10.1007/BF00123298

    Article  Google Scholar 

  • Leuning R, Moncrieff J (1990) Eddy covariance \(\text{ CO }_{2}\) flux measurements using open- and closed-path \(\text{ CO }_{2}\) analysers: Corrections for analyser water vapour sensitivity and damping of fluctuations in air sampling tubes. Boundary-Layer Meteorol 53:63–76. doi:10.1007/BF00122463

    Article  Google Scholar 

  • LI-COR (2011) LI-7700 Open path \(\text{ CH }_{4}\) analyzer: Instruction manual. Lincoln, Nebraska, USA

  • Liu H (2005) An alternative approach for \(\text{ CO }_{2}\) flux correction caused by heat and water vapour transfer. Boundary-Layer Meteorol 115:151–168. doi:10.1007/s10546-004-2420-5

    Article  Google Scholar 

  • Loescher HW, Ocheltree T, Tanner B, Swiatek E, Dano B, Wong J, Zimmerman G, Campbell J, Stock C, Jacobsen L, Shiga Y, Kollas J, Liburdy J, Law BE (2005) Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer–thermometers. Agric For Meteorol 133:119–139

    Article  Google Scholar 

  • McDermitt D, Burba G, Xu L, Anderson T, Komissarov A, Riensche B, Schedlbauer J, Starr G, Zona D, Oechel W, Oberbauer S, Hastings S (2011) A new low-power, open-path instrument for measuring methane flux by eddy covariance. Appl Phys B Lasers Opt 102:391–405. doi:10.1007/s00340-010-4307-0

    Article  Google Scholar 

  • Nicolini G, Castaldi S, Fratini G, Valentini R (2013) A literature overview of micrometeorological \(\text{ CH }_{4}\) and \(\text{ N }_{2}\text{ O }\) flux measurements in terrestrial ecosystems. Atmos Environ 81:311–319. doi:10.1016/j.atmosenv.2013.09.030

    Article  Google Scholar 

  • Nisbet EG, Dlugokencky EJ, Manning MR, Lowry D, Fisher RE, France JL, Michel SE, Miller JB, White JWC, Vaughn B, Bousquet P, Pyle JA, Warwick NJ, Cain M, Brownlow R, Zazzeri G, Lanoisellé M, Manning AC, Gloor E, Worthy DEJ, Brunke E-G, Labuschagne C, Wolff EW, Ganesan AL (2016) Rising atmospheric methane: 2007–2014 growth and isotopic shift. Glob Biogeochem Cycles 30:1356–1370. doi:10.1002/2016GB005406

    Article  Google Scholar 

  • Paw UKT, Baldocchi DD, Meyers TP, Wilson KB (2000) Correction of eddy covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorol 97:487–511. doi:10.1023/A:1002786702909

    Article  Google Scholar 

  • Petrescu AMR, Lohila A, Tuovinen J-P, Baldocchi DD, Desai AR, Roulet NT, Vesala T, Dolman AJ, Oechel WC, Marcolla B, Friborg T, Rinne J, Matthes JH, Merbold L, Meijide A, Kiely G, Sottocornola M, Sachs T, Zona D, Varlagin A, Lai DYF, Veenendaal E, Parmentier F-JW, Skiba U, Lund M, Hensen A, van Huissteden J, Flanagan LB, Shurpali NJ, Grünwald T, Humphreys ER, Jackowicz-Korczyński M, Aurela MA, Laurila T, Grüning C, Corradi CAR, Schrier-Uijl AP, Christensen TR, Tamstorf MP, Mastepanov M, Martikainen PJ, Verma SB, Bernhofer C, Cescatti A (2015) The uncertain climate footprint of wetlands under human pressure. Proc Natl Acad Sci USA 112:4594–4599. doi:10.1073/pnas.1416267112

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Sturtevant C, Ruddell BL, Knox SH, Verfaillie J, Matthes JH, Oikawa PY, Baldocchi D (2016) Identifying scale-emergent, nonlinear, asynchronous processes of wetland methane exchange. J Geophys Res Biogeosci 121:188–204. doi:10.1002/2015JG003054

    Article  Google Scholar 

  • Teh YA, Silver WL, Sonnentag O, Detto M, Kelly M, Baldocchi DD (2011) Large greenhouse gas emissions from a temperate peatland pasture. Ecosystems 14:311–325. doi:10.1007/s10021-011-9411-4

    Article  Google Scholar 

  • Tuzson B, Hiller RV, Zeyer K, Eugster W, Neftel A, Ammann C, Emmenegger L (2010) Field intercomparison of two optical analyzers for \(\text{ CH }_{4}\) eddy covariance flux measurements. Atmos Meas Tech 3:1519–1531

    Article  Google Scholar 

  • Tyler SC, Lowe DC, Dlugokencky E, Zimmerman PR, Cicerone RJ (1990) Methane and carbon monoxide emissions from asphalt pavement: measurements and estimates of their importance to global budgets. J Geophys Res 95:14007. doi:10.1029/JD095iD09p14007

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100. doi:10.1002/qj.49710644707

    Article  Google Scholar 

  • Wickham H (2016) tidyverse: Easily install and load ‘tidyverse’ packages. R package version 1.0.0. https://CRAN.R-project.org/package=tidyverse

Download references

Acknowledgements

This research was supported in part by the U.S. Department of Energy’s Office of Science, and its funding of Ameriflux core sites (Ameriflux contract 7079856), and the California Division of Fish and Wildlife, through a contract of the California Department of Water Resources (Award 4600011240). We also thank four anonymous reviewers for their constructive feedback on drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel D. Chamberlain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamberlain, S.D., Verfaillie, J., Eichelmann, E. et al. Evaluation of Density Corrections to Methane Fluxes Measured by Open-Path Eddy Covariance over Contrasting Landscapes. Boundary-Layer Meteorol 165, 197–210 (2017). https://doi.org/10.1007/s10546-017-0275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-017-0275-9

Keywords

Navigation