Advertisement

Boundary-Layer Meteorology

, Volume 165, Issue 2, pp 197–210 | Cite as

Evaluation of Density Corrections to Methane Fluxes Measured by Open-Path Eddy Covariance over Contrasting Landscapes

  • Samuel D. Chamberlain
  • Joseph Verfaillie
  • Elke Eichelmann
  • Kyle S. Hemes
  • Dennis D. Baldocchi
Research Article

Abstract

Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide \((\hbox {CO}_{2})\) fluxes, but less attention has been paid to evaluating these corrections for methane \((\hbox {CH}_{4})\) fluxes. We measured \(\hbox {CH}_{4}\) fluxes with open-path sensors over a suite of sites with contrasting \(\hbox {CH}_{4}\) emissions and energy partitioning, including a pavement airfield, two negligible-flux ecosystems (drained alfalfa and pasture), and two high-flux ecosystems (flooded wetland and rice). We found that density corrections successfully re-zeroed fluxes in negligible-flux sites; however, slight overcorrection was observed above pavement. The primary impact of density corrections varied over negligible- and high-flux ecosystems. For negligible-flux sites, corrections led to greater than 100% adjustment in daily budgets, while these adjustments were only 3–10% in high-flux ecosystems. The primary impact to high-flux ecosystems was a change in flux diel patterns, which may affect the evaluation of relationships between biophysical drivers and fluxes if correction bias exists. Additionally, accounting for density effects to high-frequency \(\hbox {CH}_{4}\) fluctuations led to large differences in observed \(\hbox {CH}_{4}\) flux cospectra above negligible-flux sites, demonstrating that similar adjustments should be made before interpreting \(\hbox {CH}_{4}\) cospectra for comparable ecosystems. These results give us confidence in \(\hbox {CH}_{4}\) fluxes measured by open-path sensors, and demonstrate that density corrections play an important role in adjusting flux budgets and diel patterns across a range of ecosystems.

Keywords

Carbon dioxide flux Density correction Eddy covariance Greenhouse gas emission Micrometeorology 

Notes

Acknowledgements

This research was supported in part by the U.S. Department of Energy’s Office of Science, and its funding of Ameriflux core sites (Ameriflux contract 7079856), and the California Division of Fish and Wildlife, through a contract of the California Department of Water Resources (Award 4600011240). We also thank four anonymous reviewers for their constructive feedback on drafts of this manuscript.

References

  1. Baldocchi D (2014) Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—the state and future of the eddy covariance method. Glob Chang Biol 20:3600–3609. doi: 10.1111/gcb.12649 CrossRefGoogle Scholar
  2. Baldocchi D, Knox S, Dronova I, Verfaillie J, Oikawa P, Sturtevant C, Matthes JH, Detto M (2016) The impact of expanding flooded land area on the annual evaporation of rice. Agric For Meteorol 223:181–193. doi: 10.1016/j.agrformet.2016.04.001 CrossRefGoogle Scholar
  3. Chamberlain SD, Boughton EH, Sparks JP (2015) Underlying ecosystem emissions exceed cattle-emitted methane from subtropical lowland pastures. Ecosystems 18:933–945. doi: 10.1007/s10021-015-9873-x CrossRefGoogle Scholar
  4. Chamberlain SD, Gomez-Casanovas N, Walter MT, Boughton EH, Bernacchi CJ, DeLucia EH, Groffman PM, Keel EW, Sparks JP (2016) Influence of transient flooding on methane fluxes from subtropical pastures. J Geophys Res G Biogeosci 121:965–977. doi: 10.1002/2015JG003283 CrossRefGoogle Scholar
  5. Chamberlain SD, Groffman PM, Boughton EH, Gomez-Casanovas N, DeLucia EH, Bernacchi CJ, Sparks JP (2017) The impact of water management practices on subtropical pasture methane emissions and ecosystem service payments. Ecol Appl. doi: 10.1002/eap.1514 Google Scholar
  6. Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Advances in agronomy. Elsevier, Atlanta, pp 1–63Google Scholar
  7. Detto M, Montaldo N, Albertson JD, Mancini M, Katul GG (2006) Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour Res 42:W08419. doi: 10.1029/2005WR004693 CrossRefGoogle Scholar
  8. Detto M, Katul GG (2007) Simplified expressions for adjusting higher-order turbulent statistics obtained from open path gas analyzers. Boundary-Layer Meteorol 122:205–216. doi: 10.1007/s10546-006-9105-1 CrossRefGoogle Scholar
  9. Detto M, Baldocchi D, Katul GG (2010) Scaling properties of biologically active scalar concentration fluctuations in the atmospheric surface layer over a managed peatland. Boundary-Layer Meteorol 136:407–430. doi: 10.1007/s10546-010-9514-z CrossRefGoogle Scholar
  10. Detto M, Verfaillie J, Anderson F, Xu L, Baldocchi D (2011) Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method. Agric For Meteorol 151:1312–1324. doi: 10.1016/j.agrformet.2011.05.014 CrossRefGoogle Scholar
  11. Foken T, Leuning R, Oncley SR, Mauder M, Aubinet M (2012) Corrections and data quality control. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 85–131CrossRefGoogle Scholar
  12. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105. doi: 10.1016/0168-1923(95)02248-1 CrossRefGoogle Scholar
  13. Fuehrer PL, Friehe CA (2002) Flux corrections revisited. Boundary-Layer Meteorol 102:415–457. doi: 10.1023/A:1013826900579 CrossRefGoogle Scholar
  14. Ham JM, Heilman JL (2003) Experimental test of density and energy-balance corrections on carbon dioxide flux as measured using open-path eddy covariance. Agron J 95:1393–1403. doi: 10.2134/agronj2003.1393 CrossRefGoogle Scholar
  15. Hatala JA, Detto M, Sonnentag O, Deverel SJ, Verfaillie J, Baldocchi DD (2012) Greenhouse gas (\(\text{ CO }_{2}\), \(\text{ CH }_{4}\), \(\text{ H }_{2}\text{ O }\)) fluxes from drained and flooded agricultural peatlands in the Sacramento–San Joaquin Delta. Agric Ecosyst Environ 150:1–18. doi: 10.1016/j.agee.2012.01.009 CrossRefGoogle Scholar
  16. Hatala JA, Detto M, Baldocchi DD (2012b) Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophys Res Lett 39:1–5. doi: 10.1029/2012GL051303 CrossRefGoogle Scholar
  17. Hsieh CI, Katul G, Chi T (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772CrossRefGoogle Scholar
  18. Hütsch BW (2001) Methane oxidation in non-flooded soils as affected by crop production—invited paper. Eur J Agron 14(4):237–260CrossRefGoogle Scholar
  19. Iwata H, Kosugi Y, Ono K, Mano M, Sakabe A, Miyata A, Takahashi K (2014) Cross-validation of open-path and closed-path eddy covariance techniques for observing methane fluxes. Boundary-Layer Meteorol 151:95–118. doi: 10.1007/s10546-013-9890-2 CrossRefGoogle Scholar
  20. Jones SK, Famulari D, Di Marco CF, Nemitz E, Skiba UM, Rees RM, Sutton AM (2011) Nitrous oxide emissions from managed grassland: a comparison of eddy covariance and static chamber measurements. Atmos Meas Tech 4:2179–2194. doi: 10.5194/amt-4-2179-2011 CrossRefGoogle Scholar
  21. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Le Quéré C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson I, Spahni R, Steele P, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823. doi: 10.1038/ngeo1955 CrossRefGoogle Scholar
  22. Knox SH, Matthes JH, Sturtevant C, Oikawa PY, Verfaillie J, Baldocchi D (2016) Biophysical controls on interannual variability in ecosystem-scale \(\text{ CO }_{2}\) and \(\text{ CH }_{4}\) exchange in a California rice paddy. J Geophys Res Biogeosci 121:978–1001. doi: 10.1002/2015JG003247 CrossRefGoogle Scholar
  23. Knox SH, Sturtevant C, Matthes JH, Koteen L, Verfaillie J, Baldocchi D (2015) Agricultural peatland restoration: Effects of land-use change on greenhouse gas (\(\text{ CO }_{2}\) and \(\text{ CH }_{4})\) fluxes in the Sacramento-San Joaquin Delta. Glob Chang Biol 21:750–765. doi: 10.1111/gcb.12745 CrossRefGoogle Scholar
  24. Kondo F, Tsukamoto O (2008) Evaluation of Webb correction on \(\text{ CO }_{2}\) flux by eddy covariance technique using open-path gas analyzer over asphalt surface. J Agric Meteorol 64:1–8CrossRefGoogle Scholar
  25. Kowalski AS (2006) Comment on “An alternative approach for \(\text{ CO }_{2}\) flux correction caused by heat and water vapour transfer”. Boundary-Layer Meteorol 120:353–355. doi: 10.1007/s10546-005-9042-4 CrossRefGoogle Scholar
  26. Kramm G, Dlugi R, Lenschow DH (1995) A re-evaluation of the Webb correction using density-weighted averages. J Hydrol 166:283–292. doi: 10.1016/0022-1694(94)05088-F CrossRefGoogle Scholar
  27. Lee X, Massman WJ (2011) A perspective on thirty years of the Webb, Pearman and Leuning density corrections. Boundary-Layer Meteorol 139:37–59. doi: 10.1007/s10546-010-9575-z CrossRefGoogle Scholar
  28. Leuning R (2007) The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows. Boundary-Layer Meteorol 123:263–267. doi: 10.1007/s10546-006-9138-5 CrossRefGoogle Scholar
  29. Leuning R, Denmead OT, Lang ARG, Ohtaki E (1982) Effects of heat and water vapor transport on eddy covariance measurement of \(\text{ CO }_{2}\) fluxes. Boundary-Layer Meteorol 23:209–222. doi: 10.1007/BF00123298 CrossRefGoogle Scholar
  30. Leuning R, Moncrieff J (1990) Eddy covariance \(\text{ CO }_{2}\) flux measurements using open- and closed-path \(\text{ CO }_{2}\) analysers: Corrections for analyser water vapour sensitivity and damping of fluctuations in air sampling tubes. Boundary-Layer Meteorol 53:63–76. doi: 10.1007/BF00122463 CrossRefGoogle Scholar
  31. LI-COR (2011) LI-7700 Open path \(\text{ CH }_{4}\) analyzer: Instruction manual. Lincoln, Nebraska, USAGoogle Scholar
  32. Liu H (2005) An alternative approach for \(\text{ CO }_{2}\) flux correction caused by heat and water vapour transfer. Boundary-Layer Meteorol 115:151–168. doi: 10.1007/s10546-004-2420-5 CrossRefGoogle Scholar
  33. Loescher HW, Ocheltree T, Tanner B, Swiatek E, Dano B, Wong J, Zimmerman G, Campbell J, Stock C, Jacobsen L, Shiga Y, Kollas J, Liburdy J, Law BE (2005) Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer–thermometers. Agric For Meteorol 133:119–139CrossRefGoogle Scholar
  34. McDermitt D, Burba G, Xu L, Anderson T, Komissarov A, Riensche B, Schedlbauer J, Starr G, Zona D, Oechel W, Oberbauer S, Hastings S (2011) A new low-power, open-path instrument for measuring methane flux by eddy covariance. Appl Phys B Lasers Opt 102:391–405. doi: 10.1007/s00340-010-4307-0 CrossRefGoogle Scholar
  35. Nicolini G, Castaldi S, Fratini G, Valentini R (2013) A literature overview of micrometeorological \(\text{ CH }_{4}\) and \(\text{ N }_{2}\text{ O }\) flux measurements in terrestrial ecosystems. Atmos Environ 81:311–319. doi: 10.1016/j.atmosenv.2013.09.030 CrossRefGoogle Scholar
  36. Nisbet EG, Dlugokencky EJ, Manning MR, Lowry D, Fisher RE, France JL, Michel SE, Miller JB, White JWC, Vaughn B, Bousquet P, Pyle JA, Warwick NJ, Cain M, Brownlow R, Zazzeri G, Lanoisellé M, Manning AC, Gloor E, Worthy DEJ, Brunke E-G, Labuschagne C, Wolff EW, Ganesan AL (2016) Rising atmospheric methane: 2007–2014 growth and isotopic shift. Glob Biogeochem Cycles 30:1356–1370. doi: 10.1002/2016GB005406 CrossRefGoogle Scholar
  37. Paw UKT, Baldocchi DD, Meyers TP, Wilson KB (2000) Correction of eddy covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorol 97:487–511. doi: 10.1023/A:1002786702909 CrossRefGoogle Scholar
  38. Petrescu AMR, Lohila A, Tuovinen J-P, Baldocchi DD, Desai AR, Roulet NT, Vesala T, Dolman AJ, Oechel WC, Marcolla B, Friborg T, Rinne J, Matthes JH, Merbold L, Meijide A, Kiely G, Sottocornola M, Sachs T, Zona D, Varlagin A, Lai DYF, Veenendaal E, Parmentier F-JW, Skiba U, Lund M, Hensen A, van Huissteden J, Flanagan LB, Shurpali NJ, Grünwald T, Humphreys ER, Jackowicz-Korczyński M, Aurela MA, Laurila T, Grüning C, Corradi CAR, Schrier-Uijl AP, Christensen TR, Tamstorf MP, Mastepanov M, Martikainen PJ, Verma SB, Bernhofer C, Cescatti A (2015) The uncertain climate footprint of wetlands under human pressure. Proc Natl Acad Sci USA 112:4594–4599. doi: 10.1073/pnas.1416267112 CrossRefGoogle Scholar
  39. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  40. Sturtevant C, Ruddell BL, Knox SH, Verfaillie J, Matthes JH, Oikawa PY, Baldocchi D (2016) Identifying scale-emergent, nonlinear, asynchronous processes of wetland methane exchange. J Geophys Res Biogeosci 121:188–204. doi: 10.1002/2015JG003054 CrossRefGoogle Scholar
  41. Teh YA, Silver WL, Sonnentag O, Detto M, Kelly M, Baldocchi DD (2011) Large greenhouse gas emissions from a temperate peatland pasture. Ecosystems 14:311–325. doi: 10.1007/s10021-011-9411-4 CrossRefGoogle Scholar
  42. Tuzson B, Hiller RV, Zeyer K, Eugster W, Neftel A, Ammann C, Emmenegger L (2010) Field intercomparison of two optical analyzers for \(\text{ CH }_{4}\) eddy covariance flux measurements. Atmos Meas Tech 3:1519–1531CrossRefGoogle Scholar
  43. Tyler SC, Lowe DC, Dlugokencky E, Zimmerman PR, Cicerone RJ (1990) Methane and carbon monoxide emissions from asphalt pavement: measurements and estimates of their importance to global budgets. J Geophys Res 95:14007. doi: 10.1029/JD095iD09p14007 CrossRefGoogle Scholar
  44. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100. doi: 10.1002/qj.49710644707 CrossRefGoogle Scholar
  45. Wickham H (2016) tidyverse: Easily install and load ‘tidyverse’ packages. R package version 1.0.0. https://CRAN.R-project.org/package=tidyverse

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Samuel D. Chamberlain
    • 1
  • Joseph Verfaillie
    • 1
  • Elke Eichelmann
    • 1
  • Kyle S. Hemes
    • 1
  • Dennis D. Baldocchi
    • 1
  1. 1.Department of Environmental Science, Policy, and ManagementUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations