Boundary-Layer Meteorology

, Volume 165, Issue 2, pp 311–332 | Cite as

A Numerical Case Study of the Implications of Secondary Circulations to the Interpretation of Eddy-Covariance Measurements Over Small Lakes

  • William T. Kenny
  • Gil Bohrer
  • Timothy H. Morin
  • Chris S. Vogel
  • Ashley M. Matheny
  • Ankur R. Desai
Research Article


We use a large-eddy simulation (LES) to study the airflow patterns associated with a small inland lake surrounded by a forest of height one-tenth the radius of the lake. We combine LES results with scalar dispersion simulations to model potential biases in eddy-covariance measurements due to the heterogeneity of surface fluxes and vertical advection. The lake-to-forest transition can induce a non-zero vertical velocity component, affecting the interpretation of flux measurements. Significant horizontal gradients of mean \(\hbox {CO}_{2}\) concentration are generated by the forest carbon sink and lake carbon source, which are transported by local roughness-induced circulation. We simulate six hypothetical locations for flux towers along a downwind gradient at various heights, and calculate at each location the effects of both the average vertical advection and average turbulent-flux divergence of \(\hbox {CO}_{2}\). We compare our model results with an analytical footprint model to find that the footprint predicted by the analytical model is inaccurate due to the complexities of advection for our test case. Similar small lakes surrounded by forests are likely affected by these phenomena as well. We recommend specialized levelling of sonic anemometers to reduce the effects of non-zero wind components. Flux towers over small water bodies should be constructed at a distance 0.5–0.67 times the diameter of the lake to provide ample separation from the areas affected by the rotor effect of the upwind forest/lake transition and the updraft at the downwind edge. Finally, we also suggest the filtering of wind directions based on the Higgins ratio.


Advection Carbon flux Footprint Greenhouse gas Lake Large-eddy simulation 



The study was funded by the NASA Earth and Space Science Graduate Training Fellowship #NNX11AL45H to WTK, and National Science Foundation (NSF) Hydrological Science award #1521238. Flux observations at the UMBS tower are supported by U.S. Department of Energy’s Office of Science, Ameriflux Management project under Flux Core Site agreement No. 7096915 through the Lawrence Berkeley National Laboratory. The LES-based footprint approach was developed with support from the NSF CBET award #1508994. The simulation ran at the Ohio Supercomputer Center, under computation allocation grant #PAS0409-4. THM was funded in part by NSF Doctoral Dissertation Improvement Grant #DEB-1601224 and the Department of Energy Office of Science Graduate Research Program, 2015. ARD acknowledges support from the NSF North Temperate Lakes LTER cooperative agreement (DEB-1440297).


  1. Anderson DE, Striegl RG, Stannard DI, Michmerhuizen CM, McConnaughey TA, LaBaugh JW (1999) Estimating lake-atmosphere CO\(_2\) exchange. Limnol Oceanogr 44(4):988–1001CrossRefGoogle Scholar
  2. Aubinet M, Feigenwinter C, Heinesch B, Bernhofer C, Canepa E, Lindroth A, Montagnani L, Rebmann C, Sedlak P, Van Gorsel E (2010) Direct advection measurements do not help to solve the night-time CO\(_2\) closure problem: evidence from three different forests. Agric For Meteorol 150(5):655–664CrossRefGoogle Scholar
  3. Aubinet M, Vesala T, Papale D (2012) Eddy covariance: a practical guide to measurement and data analysis. Springer Science & Business Media, Berlin, 438 ppGoogle Scholar
  4. Barr AG, Richardson AD, Hollinger DY, Papale D, Arain MA, Black TA, Bohrer G, Dragoni D, Fischer ML, Gu L, Law BE, Margolis HA, McCaughey JH, Munger JW, Oechel W, Schaeffer K (2013) Use of change-point detection for friction-velocity threshold evaluation in eddy-covariance studies. Agric For Meteorol 171:31–45CrossRefGoogle Scholar
  5. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50–50CrossRefGoogle Scholar
  6. Belcher SE, Harman IN, Finnigan JJ (2012) The wind in the willows: flows in forest canopies in complex terrain. Annu Rev Fluid Mech 44:479–504CrossRefGoogle Scholar
  7. Bohrer G (2007) Large eddy simulations of forest canopies for determination of biological dispersal by wind. PhD Thesis, Duke University, Durham, NC, p 150Google Scholar
  8. Bohrer G, Katul GG, Nathan R, Walko RL, Avissar R (2008) Effects of canopy heterogeneity, seed abscission, and inertia on wind-driven dispersal kernels of tree seeds. J Ecol 96:569–580CrossRefGoogle Scholar
  9. Bohrer G, Katul GG, Walko RL, Avissar R (2009) Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Boundary-Layer Meteorol 132:351–382CrossRefGoogle Scholar
  10. Boudreault, LÉ, Dupont S, Bechmann A, Dellwik E (2016) How forest inhomogeneities affect the edge flow. Boundary-Layer Meteorol 162(3):375–400Google Scholar
  11. Cassiani M, Katul GG, Albertson JD (2008) The effects of canopy leaf area index on airflow across forest edges: large eddy simulation and analytical results. Boundary-Layer Meteorol 126:433–460CrossRefGoogle Scholar
  12. Chatziefstratiou EK, Velissariou V, Bohrer G (2014) Resolving the effects of aperture and volume restriction of the flow by semi-porous barriers using large-eddy simulations. Boundary-Layer Meteorol 152(3):329–348CrossRefGoogle Scholar
  13. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–185. doi: 10.1007/s10021-006-9013-8 CrossRefGoogle Scholar
  14. Damschen EI, Baker DV, Bohrer G, Nathan R, Orrock JL, Turner JR, Tewksbury JJ (2014) How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proc Natl Acad Sci 111(9):3484–3489CrossRefGoogle Scholar
  15. Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a 3-dimensional model. Boundary-Layer Meteorol 18(4):495–527CrossRefGoogle Scholar
  16. Detto M, Katul GG, Siqueira M, Juang J-H, Stoy PC (2008) The structure of turbulence near a tall forest edge: the backward facing step flow analogy revisited. Ecol Appl 18(6):1420–1435CrossRefGoogle Scholar
  17. Detto M, Montaldo N, Albertson JD, Mancini M, Katul G (2006) Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour Res 42(8):W08419CrossRefGoogle Scholar
  18. Downing J, Prairie Y, Cole J, Duarte C, Tranvik L, Striegl R, McDowell W, Kortelainen P, Caraco N, Melack J (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51(5):2388–2397CrossRefGoogle Scholar
  19. Duchemin E, Lucotte M, Canuel R (1999) Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies. Environ Sci Technol 33(2):350–357CrossRefGoogle Scholar
  20. Dupont S, Brunet Y (2008a) Edge flow and canopy structure: a large-eddy simulation study. Boundary-Layer Meteorol 126(1):51–71Google Scholar
  21. Dupont S, Brunet Y (2008b) Influence of foliar density profile on canopy flow: a large-eddy simulation study. Agric For Meteorol 148(6–7):976–990Google Scholar
  22. Dupont S, Bonnefond J-M, Irvine MR, Lamaud E, Brunet Y (2011) Long-distance edge effects in a pine forest with a deep and sparse trunk space: in situ and numerical experiments. Agric For Meteorol 151(3):328–344CrossRefGoogle Scholar
  23. Eder F, De Roo F, Rotenberg E, Yakir D, Schmid HP, Mauder M (2015) Secondary circulations at a solitary forest surrounded by semi-arid shrubland and their impact on eddy-covariance measurements. Agric For Meteorol 211:115–127CrossRefGoogle Scholar
  24. Eugster W, DelSontro T, Sobek S (2011) Eddy covariance flux measurements confirm extreme CH (4) emissions from a Swiss hydropower reservoir and resolve their short-term variability. Biogeosciences 8(9):2815–2831CrossRefGoogle Scholar
  25. Eugster W, Kling G, Jonas T, McFadden JP, Wüest A, MacIntyre S, Chapin FS (2003) CO2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: importance of convective mixing. J Geophys Res Atmos 108:4362Google Scholar
  26. Feng M, Sexton JO, Channan S, Townshend JR (2016) A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic-spectral classification algorithm. Int J Digit Earth 9(2):113–133CrossRefGoogle Scholar
  27. Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques—part I: averaging and coordinate rotation. Boundary-Layer Meteorol 107(1):1–48CrossRefGoogle Scholar
  28. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G (2007) Changes in atmospheric constituents and in radiative forcing. Chapter 2. Climate change 2007, The physical science basisGoogle Scholar
  29. Froelich NJ, Schmid HP (2006) Flow divergence and density flows above and below a deciduous forest—part II. Below-canopy thermotopographic flows. Agric For Meteorol 138(1–4):29–43CrossRefGoogle Scholar
  30. Froelich NJ, Schmid HP, Grimmond CSB, Su HB, Oliphant AJ (2005) Flow divergence and density flows above and below a deciduous forest. Part I. Non-zero mean vertical wind above canopy. Agric For Meteorol 133(1–4):140–152CrossRefGoogle Scholar
  31. Gough C, Bohrer G, Curtis P (2016) AmeriFlux US-UMB University of Michigan Biological Station. doi: 10.17190/AMF/1246107
  32. Gough CM, Flower CE, Vogel CS, Dragoni D, Curtis PS (2009) Whole-ecosystem labile carbon production in a north temperate deciduous forest. Agric For Meteorol 149(9):1531–1540CrossRefGoogle Scholar
  33. Gough CM, Hardiman BS, Nave LE, Bohrer G, Maurer KD, Vogel CS, Nadelhoffer KJ, Curtis PS (2013) Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest. Ecol Appl 23(5):1202–1215CrossRefGoogle Scholar
  34. Hardiman BS, Bohrer G, Gough CM, Vogel CS, Curtis PS (2011) The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology 92(9):1818–1827CrossRefGoogle Scholar
  35. Higgins CW, Pardyjak E, Froidevaux M, Simeonov V, Parlange MB (2013) Measured and estimated water vapor advection in the atmospheric surface layer. J Hydrometeorol 14(6):1966–1972CrossRefGoogle Scholar
  36. Hsieh CI, Katul G, Chi T (2000) An approximate analytical model for footprint estimation of scaler fluxes in thermally stratified atmospheric flows. Adv Water Resour 23(7):765–772CrossRefGoogle Scholar
  37. Huotari J, Ojala A, Peltomaa E, Nordbo A, Launiainen S, Pumpanen J, Rasilo T, Hari P, Vesala T (2011) Long-term direct CO\(_2\) flux measurements over a boreal lake: five years of eddy covariance data. Geophys Res Lett 38. doi: 10.1029/2011gl048753
  38. Knox SH, Sturtevant C, Matthes JH, Koteen L, Verfaillie J, Baldocchi D (2015) Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO\(_2\) and CH\(_4\)) fluxes in the Sacramento–San Joaquin Delta. Global Change Biol 21(2):750–765CrossRefGoogle Scholar
  39. Lee X, Finnigan JJ, Paw UKT (2004) Coordinate systems and flux bias error. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology, a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht, pp 33–66Google Scholar
  40. MacIntyre S, Eugster W, Kling GW (2002) The critical importance of buoyancy flux for gas flux across the air-water interface. In: Donelan MA, Drennan WM, Saltzman ES, Wanninkhof R (eds) Gas transfer at water surfaces. American Geophysical Union, Washington, pp 135–139Google Scholar
  41. Mammarella I, Nordbo A, Rannik Ü, Haapanala S, Levula J, Laakso H, Ojala A, Peltola O, Pumpanen J, Heiskanen J (2015) Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland. J Geophys Res Biogeosci 120(7):1296–1314CrossRefGoogle Scholar
  42. Matheny AM, Bohrer G, Vogel CS, Morin TH, He L, Frasson RPdM, Mirfenderesgi G, Schäfer KV, Gough CM, Ivanov VY (2014) Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest. J Geophys Res Biogeosci 119(12):2292–2311CrossRefGoogle Scholar
  43. Maurer K, Bohrer G, Kenny W, Ivanov V (2015) Large-eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics. Biogeosciences 12(8):2533–2548CrossRefGoogle Scholar
  44. Morin TH, Bohrer G, Naor-Azrieli L, Mesi S, Mitsch WJ, Schäfer KVR (2014) The seasonal and diurnal dynamics of methane flux at a created urban wetland. Ecol Eng 72:74–83CrossRefGoogle Scholar
  45. Morin TH, Rey-Sánchez AC, Vogel CS, Matheny AM, Kenny WT, Bohrer G (2017a) Carbon dioxide emissions from an oligotrophic temperate lake: an eddy covariance approach. Ecol Eng. doi: 10.1016/j.ecoleng.2017.05.005 (In press)
  46. Morin TH, Bohrer G, Stefanik KC, Rey-Sanchez AC, Matheny AM, Mitsch WJ (2017b) Combining eddy-covariance and chamber measurements to determine the methane budget from a small, heterogeneous urban floodplain wetland park. Agric For Meteorol 237:160–170. doi: 10.1016/j.agrformet.2017.01.022
  47. Novick K, Brantley S, Miniat CF, Walker J, Vose J (2014) Inferring the contribution of advection to total ecosystem scalar fluxes over a tall forest in complex terrain. Agric For Meteorol 185:1–13CrossRefGoogle Scholar
  48. Podgrajsek E, Sahlée E, Rutgersson A (2015) Diel cycle of lake-air CO\(_2\) flux from a shallow lake and the impact of waterside convection on the transfer velocity. J Geophys Res Biogeosci 120(1):29–38CrossRefGoogle Scholar
  49. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol 11(9):1424–1439CrossRefGoogle Scholar
  50. Schubert CJ, Diem T, Eugster W (2012) Methane emissions from a small wind shielded lake determined by eddy covariance, flux chambers, anchored funnels, and boundary model calculations: a comparison. Environ Sci Technol 46(8):4515–4522CrossRefGoogle Scholar
  51. Sellers P, Hesslein RH, Kelly CAK (1995) Continuous measurement of CO\(_2\) for estimation of air-water fluxes in lakes: an in situ technique. Limnol Oceanogr 40(3):575–581CrossRefGoogle Scholar
  52. Stoll R, Porté-Agel F (2009) Surface heterogeneity effects on regional-scale fluxes in stable boundary layers: surface temperature transitions. J Atmos Sci 66(2):412–431CrossRefGoogle Scholar
  53. Striegl RG, Kortelainen P, Chanton JP, Wickland KP, Bugna GC, Rantakari M (2001) Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt. Limnol Oceanogr 46(4):941–945CrossRefGoogle Scholar
  54. Su H-B, Schmid H, Grimmond C, Vogel C, Curtis P (2008) An assessment of observed vertical flux divergence in long-term eddy-covariance measurements over two Midwestern forest ecosystems. Agric For Meteorol 148(2):186–205CrossRefGoogle Scholar
  55. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314CrossRefGoogle Scholar
  56. Van Gorsel E, Delpierre N, Leuning R, Black A, Munger JW, Wofsy S, Aubinet M, Feigenwinter C, Beringer J, Bonal D (2009) Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO\(_2\). Agric For Meteorol 149(11):1919–1930CrossRefGoogle Scholar
  57. Vesala T, Eugster W, Ojala A (2012) Eddy covariance measurements over lakes. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance, vol 111. Springer, New York, pp D11101Google Scholar
  58. Vesala T, Huotari J, Rannik Ü, Suni T, Smolander S, Sogachev A, Launiainen S, Ojala A (2006) Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. J Geophys Res Atmos 111(D11). doi: 10.1029/2005jd006365
  59. Walko RL, Tremback CJ (2001) RAMS technical descriptionGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Civil and Environmental Engineering and Geodetic ScienceThe Ohio State UniversityColumbusUSA
  2. 2.Department of Environmental Resources EngineeringState University of New York College of Environmental Science and ForestrySyracuseUSA
  3. 3.University of Michigan Biological StationPellstonUSA
  4. 4.Department of Atmospheric and Oceanic SciencesUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations