Skip to main content

Advertisement

Log in

Influence of the Surf Zone on the Marine Aerosol Concentration in a Coastal Area

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Sea-salt aerosol concentrations in the coastal zone are assessed with the numerical aerosol-transport model MACMod that applies separate aerosol source functions for open ocean and the surf zone near the sea–land transition. Numerical simulations of the aerosol concentration as a function of offshore distance from the surf zone compare favourably with experimental data obtained during a surf-zone aerosol experiment in Duck, North Carolina in autumn 2007. Based on numerical simulations, the effect of variations in aerosol production (source strength) and transport conditions (wind speed, air–sea temperature difference), we show that the surf-zone aerosols are replaced by aerosols generated over the open ocean as the airmass advects out to sea. The contribution from the surf-generated aerosol is significant during high wind speeds and high wave events, and is significant up to 30 km away from the production zone. At low wind speeds, the oceanic component dominates, except within 1–5 km of the surf zone. Similar results are obtained for onshore flow, where no further sea-salt aerosol production occurs as the airmass advects out over land. The oceanic aerosols that are well-mixed throughout the boundary layer are then more efficiently transported inland than are the surf-generated aerosols, which are confined to the first few tens of metres above the surface, and are therefore also more susceptible to the type of surface (trees or grass) that determines the deposition velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andreas EL (1992) Sea spray and the turbulent air–sea fluxes. J Geophys Res 97:11,429–11,441

    Article  Google Scholar 

  • Andreas EL (2002) A review of the sea spray generation function for the open ocean. In: Perrie WA (ed) Atmosphere–ocean interactions, vol 1. WIT Press, Southampton, pp 1–46

    Google Scholar 

  • Blanchard DC (1963) The electrification of the atmosphere by particles from bubbles in the sea. Prog Oceanogr 1:71–202

    Article  Google Scholar 

  • Blanchard DC, Woodcock AH (1980) The production concentration and vertical distribution of the sea-salt aerosol. Ann N Y Acad Sci 338:330–347

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Chomka M, Petelski T (1997) Modeling of the sea aerosol emission by the coastal zone. Oceanologia 39:211–225

    Google Scholar 

  • Clarke AD, Owens SR, Zhou J (2006) An ultrafine sea-salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere. J Geophys Res 111:D06202. doi:10.1029/2005JD006565

    Article  Google Scholar 

  • Deardorff JW (1968) Dependence of air–sea transfer coefficients on bulk stability. J Geophys Res 73:2549–2557

    Article  Google Scholar 

  • DeLeeuw G, Neele FP, Hill M, Smith MH, Vignati E (2000) Production of sea spray in the surf zone. J Geophys Res 105:29397–29409. doi:10.1029/2000JD900549

    Article  Google Scholar 

  • DeLeeuw G, Andreas EL, Anguelova MD, Fairall CW, Lewis ER, O’Dowd C, Schulz M, Schwartz SE (2011) Production flux of sea spray aerosol. Rev Geophys 49:RG2001. doi:10.1029/2010RG000349

    Google Scholar 

  • Demoisson A, Tedeschi G, Piazzola J (2013) A model for the atmospheric transport of sea-salt particles in coastal areas. Atmos Res 132–133:144–153. doi:10.1016/j.atmores.2013.04.002

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7:363–372

    Article  Google Scholar 

  • Exton HJ, Lathma J, Park PM, Perry SJ, Smith MH, Allan RR (1985) The production and dispersal of marine aerosol. Q J R Meteorol Soc 111:817–837

    Article  Google Scholar 

  • Francius MJ, Piazzola J, Forget P, Le Calve O, Kusmierczyk-Michulec JT (2007) Sea spray aerosol and wave energy dissipation in the surf zone. In: Atmospheric optics: models, measurements, and target-in-the-loop propagation, 25 Sept 2007, Proc SPIE 6708. doi:10.1117/12.734261

  • Gathman SG, Hoppel WA (1970) Surf electrification. J Geophys Res 75:4525–4529

    Article  Google Scholar 

  • Gong SL, Barrie LA, Blanchet J-P (1997) Modeling sea-salt aerosols in the atmosphere 1. Model development. J Geophys Res 102(D3):3805–3818

    Article  Google Scholar 

  • Grachev AA, Fairal CW (1997) Dependence of the Monin–Obukhov stability parameter on the bulk Richardson number over the ocean. J Appl Meteorol 36(4):406–414

    Article  Google Scholar 

  • Graf WH, Merzi N, Perrinjaquet C (1984) Aerodynamic drag measured at a nearshore platform on lake of Geneva. Arch Meteorol Geophys Bioklimatol Ser A 33:151–173

    Article  Google Scholar 

  • Hooper WP, Martin LU (1999) Scanning lidar measurements of surf-zone aerosol generation. Opt Eng 38:250–255

    Article  Google Scholar 

  • Hsu SA (1989) The relationship between the Monin–Obukhov stability parameter and the bulk Richardson number. J Geophys Res 94:8053–8054

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007, the physical science basis, contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 996 pp

  • Kunz GJ, DeLeeuw G, Becker E, O’Dowd CD (2002) Lidar observations of atmospheric boundary layer structure and sea spray aerosol plumes generation and transport at Mace Head, Ireland (PARFORCE experiment). J Geophys Res 107:PAR 11-1–PAR 11-14

    Article  Google Scholar 

  • Kusmierczyk-Michulec JT, Tedeschi G, van Eijk AMJ, Piazzola J (2013) Influence of atmospheric parameters on vertical profiles and horizontal transport of aerosols generated in the surf zone. Atmos Environ 77:664–673. doi:10.1016/j.atmosenv.2013.05.060

    Article  Google Scholar 

  • Lewis ER, Schwartz SE (2004) Sea salt aerosol production: mechanisms, methods, measurements and models—a critical review. In: Geophysical monogr. ser. 152. AGU, Washington, p 413. doi:10.1029/GM152

  • Monahan EC (1995) Coastal aerosol workshop proceedings. In: Goroch AK, Geernaert GL (eds) Rep. NRL/MR/7542-95-7219, Nav. Res. Lab., Monterey, p 138

  • Monahan EC, Spiel DE, Davidson KL (1986) A model of marine aerosol generation via whitecaps and wave disruption. In: Monahan EC, McNiocaill G (eds) Oceanic whitecaps. Springer, Amsterdam, pp 167–174

    Chapter  Google Scholar 

  • Neele FP, DeLeeuw G, Jansen M, Stive M (1998) Quantitative assessment of surf-produced sea spray aerosol. In: Propagation and imaging through the atmosphere II, 3 Nov 1998, Proc SPIE 3433. doi:10.1117/12.330242

  • O’Dowd CD, DeLeeuw G (2007) Marine aerosol production: a review of the current knowledge. Philos Trans R Soc A 365:1753–1774. doi:10.1098/rsta.2007.2043

    Article  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, New York 197 pp

    Google Scholar 

  • Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. J Heat Mass Transf 15:1787–1806

    Article  Google Scholar 

  • Petelski T, Chomka M (2000) Sea salt emission from the coastal zone. Oceanologia 42:399–410

    Google Scholar 

  • Petroff A, Mailliat A, Amielh M, Anselmet F (2008) Aerosol dry deposition on vegetative canopies. Part II: a new modelling approach and applications. Atmos Environ 42:3654–3683

    Article  Google Scholar 

  • Piazzola J, Despiau S (2002) A sea spray generation function for fetch-limited conditions. Ann Geophys 20:121–131

    Article  Google Scholar 

  • Piazzola J, Bouchara F, Van Eijk AMJ, DeLeeuw G (2003) Development of the Mediterranean extinction code MEDEX. Opt Eng 42:912–924. doi:10.1117/1.1556765

    Article  Google Scholar 

  • Piazzola J, Forget P, Lafon C, Despiau S (2009) Spatial variation of sea-spray fluxes over a Mediterranean coastal zone using a sea state model. Boundary-Layer Meteorol 132:167–183. doi:10.1007/s10546-009-9386-2

    Article  Google Scholar 

  • Porter JN, Lienert BR, Sharma SK, Lau E, Horton K (2003) Vertical and horizontal aerosol scattering fields over Bellows Beach, Oahu, during the SEAS experiment. J Atmos Ocean Technol 20:1375–1387

    Article  Google Scholar 

  • Shi J, Zhao DL, Li XQ, Zhong Z (2009) New wave-dependent formulae for sea-spray flux at air–sea interface. J Hydrodyn Ser B 21:573–581

    Article  Google Scholar 

  • Sievering H, Cainey J, Harvey M, McGregor J, Nichol S, Quinn AP (2004) Aerosol non-sea-salt sulphate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: ocean-derived biogenic alkalinity enhances sea-salt sulphate production by ozone oxidation. J Geophys Res 109:D19317. doi:10.1029/2003JD004315

    Article  Google Scholar 

  • Spiel DE (1994) The sizes of jet drops produced by air bubbles bursting on sea- and fresh-water surfaces. Tellus B 46:325–338

    Article  Google Scholar 

  • Spiel DE (1997) A hypothesis concerning the peak in film drop production as a function of bubble size. J Geophys Res 102:1153–1161

    Article  Google Scholar 

  • Tedeschi G, Piazzola J (2011) Development of a 2D marine aerosol transport model, application to the influence of thermal stability in the marine atmospheric boundary layer. Atmos Res 101:69–479

    Article  Google Scholar 

  • Van Eijk AMJ, Kusmierczyk-Michulec J, Francius MJ, Tedeschi G, Piazzola J, Merritt DL, Fontana JD (2011) Sea-spray aerosol particles generated in the surf zone. J Geophys Res 116:D19210. doi:10.1029/2011JD015602

    Article  Google Scholar 

  • Vignati E, De Leeuw G, Berkowicz R (1998) Aerosol transport in the coastal environment and effects on extinction. In: Propagation and imaging through the atmosphere II, 3 Nov 1998, Proc SPIE 3433. doi:10.1117/12.330223

  • Vignati E, DeLeeuw G, Berkowicz R (2001) Modeling coastal aerosol transport and effects of surf-produced aerosols on processes in the marine atmospheric boundary layer. J Geophys Res 106:20225–20238

    Article  Google Scholar 

  • Woodcock AH (1962) Solubles, in the sea. In: Hill MN (ed) Physical oceanography, vol 1. Interscience, New York, pp 305–311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Tedeschi.

Additional information

The views expressed in this study are those of the authors and not necessarily represent the views of the CTBTO Preparatory Commission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tedeschi, G., van Eijk, A.M.J., Piazzola, J. et al. Influence of the Surf Zone on the Marine Aerosol Concentration in a Coastal Area. Boundary-Layer Meteorol 163, 327–350 (2017). https://doi.org/10.1007/s10546-016-0229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0229-7

Keywords

Navigation