Skip to main content

Advertisement

Log in

Perturbations to the Spatial and Temporal Characteristics of the Diurnally-Varying Atmospheric Boundary Layer Due to an Extensive Wind Farm

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The effect of extensive terrestrial wind farms on the spatio-temporal structure of the diurnally-evolving atmospheric boundary layer is explored. High-resolution large-eddy simulations of a realistic diurnal cycle with an embedded wind farm are performed. Simulations are forced by a constant geostrophic velocity with time-varying surface boundary conditions derived from a selected period of the CASES-99 field campaign. Through analysis of the bulk statistics of the flow as a function of height and time, it is shown that extensive wind farms shift the inertial oscillations and the associated nocturnal low-level jet vertically upwards by approximately 200 m; cause a three times stronger stratification between the surface and the rotor-disk region, and as a consequence, delay the formation and growth of the convective boundary layer (CBL) by approximately 2 h. These perturbations are shown to have a direct impact on the potential power output of an extensive wind farm with the displacement of the low-level jet causing lower power output during the night as compared to the day. The low-power regime at night is shown to persist for almost 2 h beyond the morning transition due to the reduced growth of the CBL. It is shown that the wind farm induces a deeper entrainment region with greater entrainment fluxes. Finally, it is found that the diurnally-averaged effective roughness length for wind farms is much lower than the reference value computed theoretically for neutral conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abkar M, Porté-Agel F (2013) The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms. Energies 6:2338–2361. doi:10.3390/en6052338

    Article  Google Scholar 

  • Abkar M, Porté-Agel F (2015a) Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study. Phys Fluids 27(035104):1–19. doi:10.1063/1.4913695

    Google Scholar 

  • Abkar M, Porté-Agel F (2015b) A new wind-farm parameterization for large-scale atmospheric models. J Renew Sustain Energy 7(1):013,121

    Article  Google Scholar 

  • Abkar M, Sharifi A, Porté-Agel F (2016) Wake flow in a wind farm during a diurnal cycle. J Turbul 17(4):420–441

  • Aitken ML, Kosović B, Mirocha JD, Lundquist JK (2014) Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the weather research and forecasting model. J Renew Sustain Energy 6(3):033,137

    Article  Google Scholar 

  • Albertson JD, Parlange MB (1999a) Natural integration of scalar fluxes from complex terrain. Water Resour Res 23:239–252

    Article  Google Scholar 

  • Albertson JD, Parlange MB (1999b) Surface length-scales and shear stress: implications for land–atmosphere interaction over complex terrain. Water Resour Res 35:2121–2131

    Article  Google Scholar 

  • Baker RW, Walker SN (1984) Wake measurements behind a large horizontal axis wind turbine generator. Sol Energy 33(1):5–12. doi:10.1016/0038-092X(84)90110-5

    Article  Google Scholar 

  • Banta R, Newsom R, Lundquist J, Pichugina Y, Coulter R, Mahrt L (2002) Nocturnal low-level jet characteristics over kansas during cases-99. Boundary-Layer Meteorol 105(2):221–252

    Article  Google Scholar 

  • Barrie D, Kirk-Davidoff D (2010) Weather response to a large wind turbine array. Atmos Chem Phys 10(2):769–775

    Article  Google Scholar 

  • Barthelemie RJ, Jensen L (2010) Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy 13:573–586

    Article  Google Scholar 

  • Barthelmie RJ, Rathmann O, Frandsen ST, Hansen KS, Politis E, Prospathopoulos J, Rados K, Cabezón D, Schlez W, Phillips J, Neubert a, Schepers JG, Pijl SPVD (2007) Modelling and measurements of wakes in large wind farms. J Phys Conf Ser 75(012):049. doi:10.1088/1742-6596/75/1/012049

    Google Scholar 

  • Barthelmie RJ, Hansen K, Frandsen ST, Rathmann O, Schepers JG, Schlez W, Phillips J, Rados K, Zervos a, Politis ES, Chaviaropoulos PK (2009) Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy 12(June):431–444. doi:10.1002/we.348

    Article  Google Scholar 

  • Barthelmie RJ, Pryor SC, Frandsen ST, Hansen KS, Schepers JG, Rados K, Schlez W, Neubert a, Jensen LE, Neckelmann S (2010) Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J Atmos Ocean Technol 27(8):1302–1317. doi:10.1175/2010JTECHA1398.1

    Article  Google Scholar 

  • Basu S, Vinuesa JF, Swift A (2008) Dynamic LES modeling of a diurnal cycle. J Appl Meteorol Clim 47(4):1156–1174

    Article  Google Scholar 

  • Bhaganagar K, Debnath M (2015) The effects of mean atmospheric forcings of the stable atmospheric boundary layer on wind turbine wake. J Renew Sustain Energy 7(1):013124

    Article  Google Scholar 

  • Blackadar AK (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Am Meteorol Soc 38(5):283–290

    Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange MB (2005) A scale-dependent Lagrangian dynamic model for large-eddy simulation of complex turbulent flows. Phys Fluids 17:1–18

    Article  Google Scholar 

  • Brutsaert W (1992) Stability correction functions for the mean wind speed and temperature in the unstable surface layer. Geophys Res Lett 19(5):469–472. doi:10.1029/92GL00084

    Article  Google Scholar 

  • Brutsaert W, Gash J, Parlange MB (1989) Neutral humidity profiles in the boundary layer and regional evaporation from sparse pine forest. Ann Geophys 7:623–630

    Google Scholar 

  • Cal RB, Lebrón J, Castillo L, Kang HS, Meneveau C (2010) Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. J Renew Sustain Energy 2(1):013,106

    Article  Google Scholar 

  • Calaf M, Meyers J, Meneveau C (2010) Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys Fluids 22(015110):1–16

    Google Scholar 

  • Calaf M, Parlange MB, Meneveau C (2011) Large eddy simulation of scalar transport in fully developed wind-turbine array boundary layers. Phys Fluids 23(126603):1–16

    Google Scholar 

  • Calaf M, Higgins C, Parlange MB (2014) Large wind farms and the scalar flux over an heterogeneously rough land surface. Boundary-Layer Meteorol 153(3):471–495

    Article  Google Scholar 

  • Canuto C, Hussaini MY, Quarteroni A, Zang TA (1988) Fundamentals of spectral methods for PDEs. In: Spectral methods in fluid dynamics, Chap 3. Springer, Berlin, pp 76–93

  • Chiba O, Kobayashi S (1986) A study of the structure of low-level katabatic winds at Mizuho Station, east Antarctica. Boundary-Layer Meteorol 37(4):343–355

    Article  Google Scholar 

  • Churchfield MJ, Lee S, Michalakes J, Moriarty PJ (2012) A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J Turbul 13(February 2015):N14. doi:10.1080/14685248.2012.668191

    Article  Google Scholar 

  • Derbyshire SH (1990) Nieuwstadt’s stable boundary layer revisited. Q J R Meteorol Soc 116(491):127–158

    Article  Google Scholar 

  • Emeis S, Frandsen S (1993) Reduction of horizontal wind speed in a boundary layer with obstacles. Boundary-Layer Meteorol 64(1980):297–305. doi:10.1007/BF00708968

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32(1):519–571

    Article  Google Scholar 

  • Fitch AC, Olson JB, Lundquist JK, Dudhia J, Gupta AK, Michalakes J, Barstad I (2012) Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon Weather Rev 140(9):3017–3038

    Article  Google Scholar 

  • Fitch AC, Lundquist JK, Olson JB (2013a) Mesoscale influences of wind farms throughout a diurnal cycle. Mon Weather Rev 141(7):2173–2198

    Article  Google Scholar 

  • Fitch AC, Olson JB, Lundquist JK, Dudhia J, Gupta AK, Michalakes J, Barstad I (2013b) Local and mesoscale impacts of wind farms as parametrized in a mesoscale NWP model. Mon Weather Rev 140:3017–3038

    Article  Google Scholar 

  • Frandsen S (1992) On the wind speed reduction in the center of large clusters of wind turbines. J Wind Eng Ind Aerodyn 39:251–265

    Article  Google Scholar 

  • Frandsen S, Barthelmie R, Pryor S, Rathmann O, Sr Larsen, Højstrup J, Thøgersen M (2006) Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 9:39–53. doi:10.1002/we.189

    Article  Google Scholar 

  • Frigo M, Johnson S (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231

    Article  Google Scholar 

  • Giometto MG, Christen A, Meneveau C, Fang J, Krafczyk M, Parlange MB (2016) Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface. Boundary-Layer Meteorol 1–28. doi:10.1007/s10546-016-0157-6

  • Hancock P, Pascheke F (2010) Wind tunnel simulations of wind turbine wake interactions in neutral and stratified wind flow. In: 10th EMS annual meeting, 10th European conference on applications of meteorology (ECAM)

  • Higgins C, Vache K, Calaf M, Hassanpour E, Parlange MB (2015) Wind turbines and water in irrigated areas. Agric Water Manag 152:299–300. doi:10.1016/j.agwat.2014.11.016. http://linkinghub.elsevier.com/retrieve/pii/S0378377414003771

  • Hultmark M, Calaf M, Parlange MB (2013) A new wall shear stress model for atmsopheric boundary layer. J Atmos Sci 70:3460–3470

    Article  Google Scholar 

  • Iungo GV, Porté-Agel F (2014) Volumetric LiDAR scanning of wind turbine wakes under convective and neutral atmospheric stability regimes. J Atmos Ocean Technol 31(10):2035–2048. doi:10.1175/JTECH-D-13-00252.1

    Article  Google Scholar 

  • Jensen N (1983) A note on wind generator interaction. Risø-M No. 2411, pp 1–16

  • Katic I, Højstrup J, Jensen NO (1986) A simple model for cluster efficiency. In: European Wind Energy Association conference and exhibition, pp 407–410

  • Keck RE, Maré M, Churchfield MJ, Lee S, Larsen G, Madsen HA (2014) On atmsopheric stability in the dynamic wake meandering model. Wind Energy 17:1689–1710

    Article  Google Scholar 

  • Keith D, DeCarolis J, Denkenberger D, Lenschow D, Malyshev S, Pacala S, Rasch P (2004) The influence of large-scale wind power on global climate. Proc Natl Acad Sci USA 101(46):16,115–16,120

    Article  Google Scholar 

  • Kirk-Davidoff DB, Keith DW (2008) On the climate impact of surface roughness anomalies. J Atmos Sci 65:2215–2234

    Article  Google Scholar 

  • Kumar V, Svensson G, Holtslag A, Meneveau C, Parlange MB (2010) Impact of surface flux formulations and geostrophic forcing on large-eddy simulations of diurnal atmospheric boundary layer flow. J Appl Meteorol Clim 49(7):1496–1516

    Article  Google Scholar 

  • Lissaman PBS (1979) Energy effectiveness of arbitrary arrays of wind turbines. J Energy 3(6):323–328

    Article  Google Scholar 

  • Lu H, Porté-Agel F (2011) Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys Fluids 23(065101):1–19

    Google Scholar 

  • Lu H, Porté-Agel F (2015) On the impact of wind farms on a convective atmospheric boundary layer. Boundary-Layer Meteorol 157(1):81–96

    Article  Google Scholar 

  • Magnusson M, Smedman AS (1994) Influence of atmospheric stability on wind-turbine wakes. Wind Energy 18:139–152

    Google Scholar 

  • Mahrt L, Lenschow D (1976) Growth dynamics of the convectively mixed layer. J Atmos Sci 33(1):41–51

    Article  Google Scholar 

  • Markfort CD, Zhang W, Porté-Agel F (2012) Turbulent flow and scalar transport through and over aligned and staggered wind farms. J Turbul 13(1):N33

    Article  Google Scholar 

  • Meneveau C (2012) The top-down model of wind farm boundary layers and its applications. J Turbul 13:N7. doi:10.1080/14685248.2012.663092

    Article  Google Scholar 

  • Meyers J, Meneveau C (2010) Large eddy simulations of large wind-turbine arrays in the atmospheric boundary layer. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition

  • Moeng CH (1984) A large-eddy simulation model for the study of planetary boundary-layer turbulence. J Amtos Sci 41:2052–2062

    Google Scholar 

  • Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the ground layer of the atmsophere. Tr Geofiz Int Akad Nauk SSSR 151:163–187

    Google Scholar 

  • Nieuwstadt F, Brost R (1986) The decay of convective turbulence. J Atmos Sci 43(6):532–546

    Article  Google Scholar 

  • Oldroyd HJ, Katul G, Pardyjak ER, Parlange MB (2014) Momentum balance of katabatic flow on steep slopes covered with short vegetation. Geophys Res Lett 41(13):4761–4768

    Article  Google Scholar 

  • Peña A, Rathmann O (2014) Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient. Wind Energy 17(8):1269–1285

    Article  Google Scholar 

  • Porté-Agel F, Wu YT, Chen CH (2013) A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm. Energies 6(10):5297–5313. doi:10.3390/en6105297

    Article  Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J et al (2002) Cases-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83(4):555–581

    Article  Google Scholar 

  • Povitsky A, Morris PJ (2000) A higher-order compact method in space and time based on parallel implementation of the Thomas algorithm. J Comput Phys 161(1):182–203

    Article  Google Scholar 

  • Roy SB (2011) Simulating impacts of wind farms on local hydrometeorology. J Wind Eng Ind Aerodyn 99:491–498

    Article  Google Scholar 

  • Roy SB, Traiteur JJ (2010) Impacts of wind farms on surface air temperatures. Proc Natl Acad Sci USA 107(42):17,899–17,904

    Article  Google Scholar 

  • Sescu A, Meneveau C (2015) Large-eddy simulation and single-column modeling of thermally stratified wind turbine arrays for fully developed, stationary atmospheric conditions. J Atmos Ocean Technol 32(6):1144–1162

    Article  Google Scholar 

  • Shapiro A, Fedorovich E (2009) Nocturnal low-level jet over a shallow slope. Acta Geophys 57(4):950–980

    Google Scholar 

  • Sharma V, Calaf M, Lehning M, Parlange MB (2015) An LES model for a time-adaptive wind turbine. Wind Energy. doi:10.1002/we.1877

  • Shin HH, Hong SY (2011) Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Boundary-Layer Meteorol 139(2):261–281

    Article  Google Scholar 

  • Sorbjan Z (1997) Decay of convective turbulence revisited. Boundary-Layer Meteorol 82(3):503–517

    Article  Google Scholar 

  • Stensrud DJ (1996) Importance of low-level jets to climate: a review. J Clim 9(8):1698–1711

    Article  Google Scholar 

  • Stevens RJAM, Gayme DF, Meneveau C (2014) Large eddy simulation studies of the effects of alignment and wind farm length. J Renew Sustain Energy 6(2):023105

    Article  Google Scholar 

  • Sun WY, Ogura Y (1980) Modeling the evolution of the convective planetary boundary layer. J Atmos Sci 37(7):1558–1572

    Article  Google Scholar 

  • Svensson G, Holtslag A, Kumar V, Mauritsen T, Steeneveld G, Angevine W, Bazile E, Beljaars A, de Bruijn E, Cheng A, Conangla L, Cuxart J, Ek M, Falk MJ, Freedman F, Kitagawa H, Larson VE, Lock A, Mailhot J, Masson V, Park S, Pleim J, Söderberg S, Weng W, Zampieri M (2011) Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: the second GABLS experiment. Boundary-Layer Meteorol 140(2):177–206

    Article  Google Scholar 

  • Tseng YH, Meneveau C, Parlange MB (2006) Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation. Environ Sci Technol 40(8):2653–2662

    Article  Google Scholar 

  • Wang C, Prinn RG (2010) Potential climatic impacts and reliability of very large-scale wind farms. Atmos Chem Phys 10(4):2053–2061

    Article  Google Scholar 

  • Whiteman CD, Bian X, Zhong S (1997) Low-level jet climatology from enhanced rawinsonde observations at a site in the southern great plains. J Appl Meteorol 36(10):1363–1376

    Article  Google Scholar 

  • Wu YT, Porté-Agel F (2011) Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrizations. Boundary-Layer Meteorol 138:345–366. doi:10.1007/s10546-010-9569-x

    Article  Google Scholar 

  • Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, Cambridge, 406 pp

  • Wyngaard JC, Coté O (1974) The evolution of a convective planetary boundary layer—a higher-order-closure model study. Boundary-Layer Meteorol 7(3):289–308

    Article  Google Scholar 

  • Xia G, Zhou L, Freedman JM, Roy SB, Harris RA, Cervarich MC (2015) A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign. Clim Dyn 46(7):2179–2196

  • Zhang W, Markfort CD, Porté-Agel F (2013) Experimental study of the impact of large-scale wind farms on land–atmosphere exchanges. Environ Res Lett 8(015002):1–8. doi:10.1088/1748-9326/8/1/015002

    Google Scholar 

  • Zhou L, Tian Y, Roy SB, Thorncroft C, Bosart LF, Hu Y (2012) Impacts of wind farms on land surface temperature. Nature Clim Change 2(7):539–543

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Oldroyd for reading the manuscript and providing valuable comments. The work was made possible by support received through the Swiss National Science Foundation (Project No. 200021134892/1 and 20020 125092), ETH Domain Centre for Competence in Environmental Sustainability, NSERC Discovery Grant (MBP), Swiss National Supercomputing Center (CSCS), Scientific IT and Application Support (SCITAS) group at EPFL, University of Utah and University of British Columbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Parlange, M.B. & Calaf, M. Perturbations to the Spatial and Temporal Characteristics of the Diurnally-Varying Atmospheric Boundary Layer Due to an Extensive Wind Farm. Boundary-Layer Meteorol 162, 255–282 (2017). https://doi.org/10.1007/s10546-016-0195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0195-0

Keywords

Navigation