Skip to main content
Log in

Contribution of Low-Frequency Motions to Sensible Heat Fluxes over Urban and Suburban Areas

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Field observations of the atmospheric boundary layer were made over urban and suburban terrain in the Yangtze River Delta, China. A multiresolution decomposition was applied over three different types of terrain: flat homogeneous terrain, suburban terrain and urban terrain, with results indicating that, (1) the average scale contribution of u, v, w and \(T_{v}\) had a similar variability with length scale for all these three sites respectively, and the dimensionless length scale corresponding to the maximum sensible heat flux contribution increased with the terrain complexity; (2) the length scale corresponding to the maximal average scale contribution for vertical wind velocity \(\lambda _w \) was directly proportional to the roughness length \(z_{0}\) in unstable conditions; and (3) the contributions of large-scale motions led to sensible heat fluxes determined with a large-aperture scintillomter being larger than those using the eddy-covariance method for the suburban case, whereas this phenomenon was not substantial for the urban case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andreas EL (1988) Estimating \(C_{n}^{2}\) over snow and sea ice from meteorological data. J Opt Soc Am A 5:481–495

    Article  Google Scholar 

  • Asanuma J, Iemoto K (2007) Measurements of regional sensible heat flux over Mongolian grassland using large aperture scintillometer. J Hydrol 333:58–67

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET?: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434

    Article  Google Scholar 

  • Beyrich F, Bange J, Hartogensis OK, Raasch S, Braam M, van Dinther D, Gräf D, van Kesteren B, van den Kroonenberg AC, Maronga B, Martin S, Moene AF (2012) Towards a validation of scintillometer measurements: the LITFASS-2009 experiment. Boundary-Layer Meteorol 144:83–112

    Article  Google Scholar 

  • Christen A, van Gorsel E, Vogt R (2007) Coherent structrues in urban roughness sublayer turbulenc. Int J Climatol 27:1955–1968

    Article  Google Scholar 

  • Chui CK (2014) An introduction to wavelets. Academic Press, San Diego 264 pp

  • Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics. Capital City Press, Philadelphia 356 pp

  • De Bruin HAR, Kohsiek W, Van Den Hurk BJJM (1993) A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63:231–257

    Article  Google Scholar 

  • Edson JB, Fairall CW (1998) Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J Atmos Sci 55:2311–2328

    Article  Google Scholar 

  • Farge M (1992) Wavalet transforms and their applications to turbulance. Annu Rev Fluid Mech 24:395–458

    Article  Google Scholar 

  • Fitzjarrald DR, Moore KE, Cabral OMR, Scolar J, Manzi AO, De Abreu Sá LD (1990) Daytime turbulent exchange between the Amazon forest and the atmosphere. J Geophys Res 95:16825–16838

    Article  Google Scholar 

  • Frenzen P, Vogel CA (1992) The turbulent kinetic energy budget in the atmospheric surface layer: a review and an experimental reexamination in the field. Boundary-Layer Meteorol 60:49–76

    Article  Google Scholar 

  • Guyot A, Cohard JM, Anquetin S, Galle S, Lloyd CR (2009) Combined analysis of energy and water balances to estimate latent heat flux of a sudanian small catchment. J Hydrol 375:227–240

    Article  Google Scholar 

  • Haar A (1910) Zur theorie der orthogonalen funktionensysteme. Math Ann 69:331–371

    Article  Google Scholar 

  • Hartogensis OK, De Bruin HAR, Van de Wiel BJH (2002) Displaced-beam small aperture scintillometer test. Part II: CASES-99 stable boundary-layer experiment. Boundary-Layer Meteorol 105:149–176

    Article  Google Scholar 

  • Hartogensis OK, Watts CJ, Rodriguez J-C, De Bruin HAR (2003) Derivation of an effective height for scintillometers: La Poza experiment in Northwest Mexico. J Hydrometeorol 4:915–928

    Article  Google Scholar 

  • Hayashi T (1994) An analysis of wind velocity fluctuations in the atmospheric surface layer using an orthonormal wavelet transform. Boundary-Layer Meteorol 70:307–326

    Article  Google Scholar 

  • Held A (2014) Spectral analysis of turbulent aerosol fluxes by Fourier transform, wavelet analysis, and multiresolution decomposition. Boundary-Layer Meteorol 151:79–94

    Article  Google Scholar 

  • Hill RJ, Ochs GR, Wilson JJ (1992) Measuring surface-layer fluxes of heat and momentum using optical scintillation. Boundary-Layer Meteorol 58:391–408

    Article  Google Scholar 

  • Hoedjes JCB, Chehbouni A, Ezzahar J, Escadafal R, de Bruin HAR (2007) Comparison of large aperture scintillometer and eddy covariance measurements: can thermal infrared data be used to capture footprint-induced differences? J Hydrometeorol 8:144–159

    Article  Google Scholar 

  • Howell JF, Mahrt L (1994) An adaptive multiresolution data filter: applications to turbulence and climatic time series. J Atmos Sci 51:2165–2178

    Article  Google Scholar 

  • Howell JF, Mahrt L (1997) Multiresolution flux decomposition. Boundary-Layer Meteorol 83:117–137

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York 289 pp

  • Kanda M, Moriwaki R, Roth M, Oke T (2002) Area-averaged sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry. Boundary-Layer Meteorol 105:177–193

    Article  Google Scholar 

  • Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T (2004) LES study of the energy imbalance problem with eddy covariance fluxes. Boundary-Layer Meteorol 110:381–404

    Article  Google Scholar 

  • Katul G, Albertson J (2012) Low dimensional transport mechanics near the forest-atmosphere interface. Bayesian Inference Wavelet-Based Model, Lecture Notes in Statistics. 141:361–380

  • Katul G, Vidakovic B (1996) The partitioning of attached and detached eddy motion in the atmospheric surface layer using Lorentz wavelet filtering. Boundary-Layer Meteorol 77:153–172

    Article  Google Scholar 

  • Katul G, Vidakovic B (1998) Identification of low-dimensional energy containing/flux transporting eddy motion in the atmospheric surface layer using wavelet thresholding methods. J Atmos Sci 55:377–389

    Article  Google Scholar 

  • Katul GG, Parlange MB (1995) Analysis of land surface heat fluxes using the orthonormal wavelet approach. Water Resour Res 31:2743–2749

    Article  Google Scholar 

  • Katul GG, Parlange MB (1994) On the active role of temperature in surface-layer turbulence. J Atmos Sci 51:2181–2195

    Article  Google Scholar 

  • Katul GG, Parlange MB, Chu CR (1994) Intermittency, local isotropy, and non-Gaussian statistics in atmospheric surface layer turbulence. Phys Fluids 6:2480–2492

    Article  Google Scholar 

  • Katul GG, Geron CD, Hsieh C-I, Vidakovic B, Guenther AB (1998) Active turbulence and scalar transport near the forest–atmosphere interface. J Appl Meteorol 37:1533–1546

    Article  Google Scholar 

  • Kleissl J, Hong SH, Hendrickx MH (2009) New Mexico scintillometer network: supporting remote sensing and hydrologic and meteorological models. Bull Am Meteorol Soc 90:207–218

    Article  Google Scholar 

  • Kulkarni JR, Sadani LK, Murthy BS (1999) Wavelet analysis of intermittent turbulent transport in the atmospheric surface layer over a monsoon trough region. Boundary-Layer Meteorol 90:217–239

    Article  Google Scholar 

  • Lagouarde JP, Irvine M, Bonnefond JM, Grimmond CSB, Long N, Oke TR, Salmond JA, Offerle B (2006) Monitoring the sensible heat flux over urban areas using large aperture scintillometry: case study of Marseille city during the ESCOMPTE experiment. Boundary-Layer Meteorol 118:449–476

    Article  Google Scholar 

  • Lee S-H, Lee J-H, Kim B-Y (2015) Estimation of turbulent sensible heat and momentum fluxes over a heterogeneous urban area using a large aperture scintillometer. Adv Atmos Sci 32:1092–1105

    Article  Google Scholar 

  • Lu C-H, Fitzjarrald DR (1994) Seasonal and diurnal variations of coherent structures over a deciduous forest. Boundary-Layer Meteorol 69:43–69

    Article  Google Scholar 

  • Mahrt L (1991) Eddy asymmetry in the sheared heated boundary layer. J Atmos Sci 48:472–492

    Article  Google Scholar 

  • Mahrt L, Howell JF (1994) The influence of coherent structures and microfronts on scaling laws using global and local transforms. J Fluid Mech 260:247–270

    Article  Google Scholar 

  • Malhi Y, McNaughton K, Randow C (2005) Low frequency atmospheric transport and surface flux measurements. In: Lee X, Massman WJ, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 101–118

    Google Scholar 

  • Mallat S (1989a) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693

    Article  Google Scholar 

  • Mallat S (1989b) Multiresolution approximations and wavelet orthonormal bases of \({\rm L}^{2}({R})\). Trans Am Math Soc 315:69–87

    Google Scholar 

  • McAneney KJ, Green AE, Astill MS (1995) Large-aperture scintillometry: the homogeneous case. Agric For Meteorol 76:149–162

    Article  Google Scholar 

  • Meijninger WML, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, de Bruin HAR (2002) Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface—Flevoland field experiment. Boundary-Layer Meteorol 105:37–62

    Article  Google Scholar 

  • Moriwaki R, Kanda M (2006) Local and global similarity in turbulent transfer of heat, water vapour, and CO\(_{2}\) in the dynamic convective sublayer over a suburban area. Boundary-Layer Meteorol 120:163–179

    Article  Google Scholar 

  • Park SJ, Park SU, Ho CH, Mahrt L (2009) Flux–gradient relationship of water vapor in the surface layer obtained from CASES-99 experiment. J Geophys Res 114:D08115

    Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83:555–581

    Article  Google Scholar 

  • Raupach MR, Antonia RA, Rajagopalan R (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44:1–25

    Article  Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126:941–990

    Article  Google Scholar 

  • Roth M, Salmond JA, Satyanarayana ANV (2006) Methodological considerations regarding the measurement of turbulent fluxes in the urban roughness sublayer: the role of scintillometery. Boundary-Layer Meteorol 121:351–375

    Article  Google Scholar 

  • Thiermann V, Grassl H (1992) The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Boundary-Layer Meteorol 58:367–389

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Technol 20:660–672

    Article  Google Scholar 

  • Von Randow C, Sá LDA, Gannabathula PSSD, Manzi AO, Arlino PRA, Kruijt B (2002) Scale variability of atmospheric surface layer fluxes of energy and carbon over a tropical rain forest in southwest Amazonia 1. Diurnal conditions. J Geophys Res D Atmos 107:LBA 29-1–LBA 29-12

  • Von Randow C, Kruijt B, Holtslag AAM (2006) Low-frequency modulation of the atmospheric surface layer over Amazonian rain forest and its implication for similarity relationships. Agric For Meteorol 141:192–207

    Article  Google Scholar 

  • Von Randow C, Kruijt B, Holtslag AAM, de Oliveira MBL (2008) Exploring eddy-covariance and large-aperture scintillometer measurements in an Amazonian rain forest. Agric For Meteorol 148:680–690

    Article  Google Scholar 

  • Wang GY, Sun JN, Zhang HS (2013) Flux–gradient relationships for momentum in the urban surface layer. J Nanjing Univ 49:774–781 (in Chinese with English abstract)

    Google Scholar 

  • Wang T, Ochs GR, Clifford SF (1978) A saturation-resistant optical scintillometer to measure \(C_{n}^{2}\). J Opt Soc Am 68:334–338

    Article  Google Scholar 

  • Ward HC, Evans JG, Grimmond CSB (2014) Multi-scale sensible heat fluxes in the suburban environment from large-aperture scintillometry and eddy covariance. Boundary-Layer Meteorol 152:65–89

    Article  Google Scholar 

  • Wesely ML (1976) The combined effect of temperature and humidity fluctuations on refractive index. J Appl Meteorol 15:43–49

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150

    Article  Google Scholar 

  • Wood CR, Kouznetsov RD, Gierens R, Nordbo A, Järvi L, Kallistratova MA, Kukkonen J (2013) On the temperature structure parameter and sensible heat flux over Helsinki from sonic anemometry and scintillometry. J Atmos Ocean Technol 30:1604–1615

    Article  Google Scholar 

  • Wyngaard JC, Izumi Y, Collins SAJ (1971) Behavior of the refractive-index-structure parameter near the ground. J Opt Soc Am 61:1646–1650

    Article  Google Scholar 

  • Yee E, Chan R, Kosteniuk PR, Biltoft CA, Bowers JF (1996) Multiscaling properties of concentration fluctuations in dispersing plumes revealed using an orthonormal wavelet decomposition. Boundary-Layer Meteorol 77:173–207

    Article  Google Scholar 

  • Zhang H, Zhang H (2015) Comparison of turbulent sensible heat flux determined by large-aperture scintillometer and eddy covariance over urban and suburban areas. Boundary-Layer Meteorol 154:119–136

    Article  Google Scholar 

  • Zhang H, Zhang H, Zhao Z, Cai X, Kang L (2014) Statistic characteristics of atmospheric turbulence over southern suburbs of Nanjing. J Meteorol Sci 34:139–148 (in Chinese with English abstract)

    Google Scholar 

  • Zou J, Liu G, Sun J, Zhang H, Yuan R (2015) The momentum flux–gradient relations derived from filed measurements in the urban roughness sublayer in three cities in China. J Geophys Res Atmos 120:10797–10809

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly funded by R&D Special Fund for Public Welfare Industry (meteorology) by the Ministry of Finance and Ministry of Science and Technology (GYHY201506001), the Public Welfare Projects for Environmental Protection (201409001), the National Natural Science Foundation of China (91544216, 41475007) and the Tianjin Natural Science Foundation (13JCYBJC20000). During the review process, the current paper’s language was checked by Curtis Wood.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, H., Cai, X. et al. Contribution of Low-Frequency Motions to Sensible Heat Fluxes over Urban and Suburban Areas. Boundary-Layer Meteorol 161, 183–201 (2016). https://doi.org/10.1007/s10546-016-0163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0163-8

Keywords

Navigation