Advertisement

Boundary-Layer Meteorology

, Volume 160, Issue 3, pp 475–499 | Cite as

Experimental and Numerical Study of Wind and Turbulence in a Near-Field Dispersion Campaign at an Inhomogeneous Site

  • Xiao WeiEmail author
  • Eric Dupont
  • Eric Gilbert
  • Luc Musson-Genon
  • Bertrand Carissimo
Research Article

Abstract

We present a detailed experimental and numerical study of the local flow field for a pollutant dispersion experimental program conducted at SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique), a complex and intensively instrumented site in a southern suburb of Paris. Global analysis of continuous measurements over 2 years highlights the impact of terrain heterogeneity on wind and turbulence. It shows that the forest to the north of the experimental field induces strong directional shear and wind deceleration below the forest canopy height. This directional shear is stronger with decreasing height and decreasing distance from the forest edge. Numerical simulations are carried out using Code_Saturne, a computational fluid dynamics code, in Reynolds-averaged Navier–Stokes mode with a standard \(k{-}\varepsilon \) closure and a canopy model, in neutral and stable stratifications. These simulations are shown to reproduce globally well the characteristics of the mean flow, especially the directional wind shear in northeasterly and northwesterly cases and the turbulent kinetic energy increase induced by the forest. However, they slightly underestimate wind speed and the directional shear of the flow below the forest canopy height. Sensitivity studies are performed to investigate the influence of leaf area density, inlet stability condition, and roughness length. These studies show that the typical features of the canopy flow become more pronounced as canopy density increases. Performance statistics indicate that the impact of the forest and adequate inlet profiles are the most important factors in the accurate reproduction of flow at the site, especially under stable stratification.

Keywords

Atmospheric inhomogeneous flow Code_Saturne Sonic anemometer Surface heterogeneity Turbulence measurement 

Notes

Acknowledgments

The authors thank the measurement team of the SIRTA dispersion campaign: D. Demengel, Y. Lefranc, S. Rozborski, and A. Faucheux from CEREA, and T. Morand from EDF R&D. We also acknowledge SIRTA for providing the data from temperature sensors, microwave radiometer HATPRO, lidar, and sodar used in this study

References

  1. Archambeau F, Méchitoua N, Sakiz M (2004) Code\(\_\)Saturne: a finite volume code for the computation of turbulent incompressible flows—industrial applications. Int J Finite 1:1–62Google Scholar
  2. Arya SP (1999) Air pollution meteorology and dispersion. Oxford University Press, New York, 310 ppGoogle Scholar
  3. Biltoft CA (2002) Customer report for Mock Urban Setting Test. West Desert Test Center, U.S Army Dugway Proving Ground, Report WDTC-FR-01-121Google Scholar
  4. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189CrossRefGoogle Scholar
  5. Chahine A, Dupont S, Sinfort C, Brunet Y (2014) Wind-flow dynamics over a vineyard. Boundary-Layer Meteorol 151:557–577CrossRefGoogle Scholar
  6. Dalpé B, Masson C (2009) Numerical simulation of wind flow near a forest edge. J Wind Eng Ind Aerodyn 97:228–241CrossRefGoogle Scholar
  7. Demael E, Carissimo B (2008) Comparative evaluation of an Eulerian CFD and Gaussian plume models based on prairie grass dispersion experiment. J Appl Meteorol Climatol 47:888–900CrossRefGoogle Scholar
  8. Detering HW, Etling D (1985) Application of the E–\(\varepsilon \) turbulence model to the atmospheric boundary layer. Boundary-Layer Meteorol 33:113–133CrossRefGoogle Scholar
  9. Duynkerke PG (1988) Application of the E–\(\varepsilon \) turbulence closure model to the neutral and stable atmospheric boundary layer. J Atmos Sci 45:865–880CrossRefGoogle Scholar
  10. Dupont S, Brunet Y (2008a) Influence of foliar density profile on canopy flow: a large-eddy simulation study. Agric For Meteorol 148:976–990CrossRefGoogle Scholar
  11. Dupont S, Brunet Y (2008b) Edge flow and canopy structure: a large-eddy simulation study. Boundary-Layer Meteorol 126:51–71CrossRefGoogle Scholar
  12. Dupont S, Brunet Y, Jarosz N (2006) Eulerian modelling of pollen dispersal over heterogeneous vegetation canopies. Agric For Meteorol 141:82–104CrossRefGoogle Scholar
  13. Dyer AJ, Hicks BB (1970) Flux gradient relationships in the constant flux layer. Q J R Meteorol Soc 96:715–721CrossRefGoogle Scholar
  14. Fernando HJS, Weil JC (2010) Whither the stable boundary layer? A shift in the Research Agenda. Bull Am Meteorol Soc 91:1475–1484CrossRefGoogle Scholar
  15. Fesquet C, Drobinski P, Barthlott C, Dubos T (2009) Impact of terrain heterogeneity on near-surface turbulence structure. Atmos Res 94:254–269CrossRefGoogle Scholar
  16. Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007) SHEBA flux–profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorol 124:315–333CrossRefGoogle Scholar
  17. Haeffelin M, Barthès L, Bock O, Boitel C, Bony S, Bouniol D, Chepfer H, Chiriaco M, Delanoë J, Drobinski P, Dufresne J, Flamant C, Grall M, Hodzic A, Hourdin F, Lapouge F, Lemaître Y, Mathieu A, Morille Y, Naud C, Noël V, Pelon J, Pietras C, Protat A, Romand B, Scialom G, Vautard R (2005) SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann Geophys 23:253–3275CrossRefGoogle Scholar
  18. Hicks BB (1976) Wind profile relationships from the ‘wangara’ experiment. Q J R Meteorol Soc 102:535–551Google Scholar
  19. Irvine MR, Gardiner BA, Fiedler F (1997) The evolution of turbulence across a forest edge. Boundary-Layer Meteorol 84:467–496CrossRefGoogle Scholar
  20. Katul GG, Mahrt L, Poggi D, Sanz C (2004) One- and two-equation models for canopy turbulence. Boundary-Layer Meteorol 113:81–109CrossRefGoogle Scholar
  21. Kerschgens MJ, Noelle C, Martens R (2000) Comments on turbulence parameters for the calculation of dispersion in the atmospheric boundary layer. Meteorol Z 9:155–163Google Scholar
  22. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289CrossRefGoogle Scholar
  23. Milliez M, Carissimo B (2007) Numerical simulation of pollutant dispersion in an idealized urban area, for different meteorological conditions. Boundary-Layer Meteorol 122:321–342CrossRefGoogle Scholar
  24. Milliez M, Carissimo B (2008) Computational fluid dynamical modelling of concentration fluctuations in an idealized urban area. Boundary-Layer Meteorol 127:241–259CrossRefGoogle Scholar
  25. Mylne KR (1992) Concentration fluctuation measurements in a plume dispersing in a stable surface layer. Boundary-Layer Meteorol 60:15–48CrossRefGoogle Scholar
  26. Mylne KR, Mason PJ (1991) Concentration fluctuation measurements in a dispersing plume at a range of up to 1000 m. Q J R Meteorol Soc 117:177–206Google Scholar
  27. Mylne KR, Davidson MJ, Thomson DJ (1996) Concentration fluctuation measurements in tracer plumes using high and low frequency response detectors. Boundary-Layer Meteorol 79:225–242CrossRefGoogle Scholar
  28. Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta RM, Newsom RK, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99, a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83:555–581CrossRefGoogle Scholar
  29. Sanz C (2003) A note on k–\(\varepsilon \) modelling of vegetation canopy air-flows. Boundary-Layer Meteorol 108:191–197CrossRefGoogle Scholar
  30. Shaw RH, Schumann U (1992) Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol 61:47–64CrossRefGoogle Scholar
  31. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 670 ppGoogle Scholar
  32. Thomas C, Foken T (2007) Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Boundary-Layer Meteorol 122:123–147CrossRefGoogle Scholar
  33. Viollet PL (1988) On the numerical modeling of stratified flows. In: Dronkers J, Leussen W (eds) Physical processes in estuaries. Springer, Berlin, pp 257–277CrossRefGoogle Scholar
  34. Zaidi H, Dupont E, Milliez M, Carissimo B, Musson Genon L (2011) Evaluating the ability of two canopy models to reproduce the forested area effects using code-saturne. In: 13th International conference on wind engineering, Amsterdam, 10–15 July 2011Google Scholar
  35. Zaidi H, Dupont E, Milliez M, Musson-Genon L, Carissimo B (2013) Numerical simulations of the microscale heterogeneities of turbulence observed on a complex site. Boundary-Layer Meteorol 147:237–259CrossRefGoogle Scholar
  36. Zajaczkowski FJ, Haupt SE, Schmehl KJ (2011) A preliminary study of assimilating numerical weather prediction data into computational fluid dynamics models for wind prediction. J Wind Eng Ind Aerodyn 99:320–329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Xiao Wei
    • 1
    Email author
  • Eric Dupont
    • 1
  • Eric Gilbert
    • 1
  • Luc Musson-Genon
    • 1
  • Bertrand Carissimo
    • 1
  1. 1.CEREA (Teaching and Research Center in Atmospheric EnvironmentJoint Laboratory ENPC-EDF R&D), EDF R&DChatou CedexFrance

Personalised recommendations