Skip to main content

Advertisement

Log in

On the Space-Time Structure of Sheared Turbulence

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We develop a model that predicts all two-point correlations in high Reynolds number turbulent flow, in both space and time. This is accomplished by combining the design philosophies behind two existing models, the Mann spectral velocity tensor, in which isotropic turbulence is distorted according to rapid distortion theory, and Kristensen’s longitudinal coherence model, in which eddies are simultaneously advected by larger eddies as well as decaying. The model is compared with data from both observations and large-eddy simulations and is found to predict spatial correlations comparable to the Mann spectral tensor and temporal coherence better than any known model. Within the developed framework, Lagrangian two-point correlations in space and time are also predicted, and the predictions are compared with measurements of isotropic turbulence. The required input to the models, which are formulated as spectral velocity tensors, can be estimated from measured spectra or be derived from the rate of dissipation of turbulent kinetic energy, the friction velocity and the mean shear of the flow. The developed models can, for example, be used in wind-turbine engineering, in applications such as lidar-assisted feed forward control and wind-turbine wake modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, Cambridge, UK, pp 28–33

  • Berg J, Mann J, Patton EG (2013) Lidar-observed stress vectors and veer in the atmospheric boundary layer. J Atmos OceanTechnol 30(9):1961–1969. doi:10.1175/JTECH-D-12-00266.1

    Google Scholar 

  • Bossanyi E, Savini B, Iribas M, Hau M, Fischer B, Schlipf D, van Engelen T, Rossetti M, Carcangiu CE (2012) Advanced controller research for multi-MW wind turbines in the UPWIND project. Wind Energy 15(1):119–145. doi:10.1002/we.523

    Article  Google Scholar 

  • Bossanyi E (2013) Un-freezing the turbulence: application to LiDAR-assisted wind turbine control. IET Renew Power Gener 7(4):321–329

    Article  Google Scholar 

  • Chougule AS (2013) Influence of atmospheric stability on the spatial structure of turbulence. DTU Wind Energy PhD-0028 (EN)

  • Chougule A, Mann J, Segalini A, Dellwik E (2014) Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes. Wind Energy 18(3):469–481. doi:10.1002/we.1709

    Article  Google Scholar 

  • de Maré M, Mann J (2014) Validation of the Mann spectral tensor for offshore wind conditions at different atmospheric stabilities. J Phys Conf Ser 524(1):12,106

    Article  Google Scholar 

  • Fung JCH, Hunt JCR, Malik NA, Perkins RJ (1992) Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J Fluid Mech 236:281–318. doi:10.1017/S0022112092001423

    Article  Google Scholar 

  • Hanazaki H, Hunt JCR (2004) Structure of unsteady stably stratified turbulence with mean shear. J Fluid Mech 507:1–42. doi:10.1017/S0022112004007888

    Article  Google Scholar 

  • Hunt JCR, Wray AA, Buell JC (1987) Big whorls carry little whorls. In: Proceedings of the 1987 Summer Program,CTR-S87 NASA Centre for Turbulence Research

  • Kaneda Y, Ishida T (2000) Suppression of vertical diffusion in strongly stratified turbulence. J Fluid Mech 402:311–327

    Article  Google Scholar 

  • Kolmogorov AN (1968) Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers. Soviet Physics Uspekhi 10(6):734

    Article  Google Scholar 

  • Kristensen L (1979) On longitudinal spectral coherence. Boundary-Layer Meteorol 16(2):145–153. doi:10.1007/BF02350508

    Article  Google Scholar 

  • Larsen GC, Madsen HA, Thomsen K, Larsen TJ (2008) Wake meandering: a pragmatic approach. Wind Energy 11(4):377–395. doi:10.1002/we.267

    Article  Google Scholar 

  • Mann J (1994) The spatial structure of neutral atmospheric surface-layer turbulence. J Fluid Mech 273:141–168. doi:10.1017/S0022112094001886

    Article  Google Scholar 

  • Mikkelsen T, Angelou N, Hansen K, Sjöholm M, Harris M, Slinger C, Hadley P, Scullion R, Ellis G, Vives G (2013) A spinner-integrated wind lidar for enhanced wind turbine control. Wind Energy 16(4):625–643. doi:10.1002/we.1564

    Article  Google Scholar 

  • Moffatt K (1967) Interaction of turbulence with strong wind shear. In: Yaglom AM, Tatarski VI (eds) Atmosphere turbulence and radio wave propagationAtmosphere turbulence and radio wave propagation. Nauka, Moscow, pp 139–156

    Google Scholar 

  • Ott S, Mann J (2005) An experimental test of Corrsin’s conjecture and some related ideas. New J Phys 7(1):142

    Article  Google Scholar 

  • Pao LY, Johnson KE (2011) Control of wind turbines. IEEE Control Syst 31(2):44–62

    Article  Google Scholar 

  • Peña A, Gryning SE, Mann J (2010) On the length-scale of the wind profile. Q J R Meteorol Soc 136(653):2119–2131. doi:10.1002/qj.714

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge, UK, pp 219–223

  • Saffman PG (1963) An approximate calculation of the Lagrangian auto-correlation coefficient for stationary homogeneous turbulence. Appl Sci Res Sect A 11(3):245–255. doi:10.1007/BF03184983

    Google Scholar 

  • Salhi a, Cambon C (2010) Stability of rotating stratified shear flow: an analytical study. Phys Rev E 81(2):026,302

    Article  Google Scholar 

  • Sathe A, Mann J (2013) A review of turbulence measurements using ground-based wind lidars. Atmos Meas Tech 6(11):3147–3167. doi:10.5194/amt-6-3147-2013

    Article  Google Scholar 

  • Schlipf D, Cheng PW, Mann J (2013) Model of the correlation between lidar systems and wind turbines for lidar-assisted control. J Atmos OceanTechnol 30:2233

    Google Scholar 

  • Simley E, Pao LY, Frehlich R, Jonkman B, Kelley N (2014) Analysis of light detection and ranging wind speed measurements for wind turbine control. Wind Energy 17(3):413–433. doi:10.1002/we.1584

    Article  Google Scholar 

  • Sullivan PP, Patton EG (2011) The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J Atmos Sci 68(10):2395–2415. doi:10.1175/JAS-D-10-05010.1

  • Townsend AA (1976) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge, UK, pp 88–91

    Google Scholar 

  • von Kármán T (1948) Progress in the statistical theory of turbulence. Proc Nail Acad Sci 34(11):530–539

    Article  Google Scholar 

  • Wilczek M, Stevens RJAM, Narita Y, Meneveau C (2014) A wavenumber-frequency spectral model for atmospheric boundary layers. J Phys Conf Ser 524(1):12,104

    Article  Google Scholar 

  • Wilczek M, Narita Y (2012) Wave-number-frequency spectrum for turbulence from a random sweeping hypothesis with mean flow. Phys Rev E 6(86):066,308

    Article  Google Scholar 

  • Wyngaard JC, Coté OR (1972) Cospectral similarity in the atmospheric surface layer. Q J R Meteorol Soc 98(417):590–603. doi:10.1002/qj.49709841708

    Article  Google Scholar 

Download references

Acknowledgments

This work has been made possible by funding from Forsknings- og Innovationsstyrelsen, DONG Energy A/S and the DSF Flow Center. The authors would like to thank Ned Patton at UCAR for generously making LES data available, and Gunner Larsen and Søren Ott for valuable suggestions and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin de Maré.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Maré, M., Mann, J. On the Space-Time Structure of Sheared Turbulence. Boundary-Layer Meteorol 160, 453–474 (2016). https://doi.org/10.1007/s10546-016-0143-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0143-z

Keywords

Navigation