Skip to main content
Log in

Sea-Breeze and Topographic Influences on the Planetary Boundary Layer in the Coastal Upwelling Area of Cabo Frio (Brazil)

  • Notes and comments
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We use a fully coupled oceanic-atmospheric model to investigate the sources and sinks of turbulent kinetic energy in the Cabo Frio coastal area and to determine the role of topography and the sea breeze in planetary boundary-layer (PBL) development. The study area presents similar boundary-layer characteristics than other coastal upwelling areas with complex topography, such as increased stability and low-level jets. The results show that the major effect of upwelling, over the investigated area, is to maintain low temperatures in the lower atmosphere over the coastal zone, sustaining a strong temperature inversion that precludes the vertical PBL development. Therefore, the cooling effect reduces the horizontal thermal contrast between land and water, generating a negative feedback between the intensity of the sea breeze and the intensity of the upwelling. The topography at Cabo Frio prevents this cooling effect from propagating inland, since it limits the penetration of the sea-breeze circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Brooks IM, Soderberg S, Tjernstrom M (2003) The turbulence structure of the stable atmospheric boundary layer around a coastal headland: aircraft observations and modeling results. Boundary-Layer Meteorol 107:531–559

    Article  Google Scholar 

  • Carbonel CAAH, Valentin JL (1999) Numerical modelling of phytoplankton bloom in the upwelling ecosystem of Cabo Frio (Brasil). Ecol Model 116:135–148

    Article  Google Scholar 

  • Diniz AG, Hamacher C, Wagener ALR, Rodriguez-Gonzalez E (2003) Is copper an inhibiting factor for primary production in the upwelling waters of Cabo Frio. J Braz Chem Soc 14(5):815–821

    Article  Google Scholar 

  • Dorman CE, Holt T, Rogers DP, Edwards K (2000) Large-scale structure of the June–July 1996 marine boundary layer along California and Oregon. Mon Weather Rev 128:1632–1652

    Article  Google Scholar 

  • Dourado M, Oliveira AP (2001) Observational description of the atmospheric and oceanic boundary layer over the Atlantic Ocean. Rev Bras Oceanogr 49(1/2):49–59

    Google Scholar 

  • Dourado M, Oliveira AP (2008) A numerical investigation of the atmosphere-ocean thermal contrast over the coastal upwelling region of Cabo Frio, Brazil. Atmosfera 21(1):13–34

    Google Scholar 

  • Enriquez AG, Friehe CA (1995) Effects of wind stress and wind stress curl variability on coastal upwelling. J Phys Oceanogr 25:1651–1671

    Article  Google Scholar 

  • Franchito SH, Oda TO, Rao VB, Kayano MT (2008) Interaction between coastal upwelling and local winds at Cabo Frio, Brazil: an observational study. J Appl Meteorol Climatol 47:1590–1598

    Article  Google Scholar 

  • Franchito SH, Rao VB, Oda TO, Conforte JC (2007) An observational study of the evolution of the atmospheric boundary-layer over Cabo Frio, Brazil. Ann Geophys 25:1735–1744

    Article  Google Scholar 

  • Franchito SH, Rao VB, Stech JL, Lorenzzetti JA (1998) The effect of coastal upwelling on the sea-breeze circulation at Cabo Frio, Brazil: a numerical experiment. Ann Geophys 16:866–871

    Article  Google Scholar 

  • Guimarães MA, Paiva AM, Coutinho R (2005) Modeling \(Ulva\) spp. dynamics in a tropical upwelling region. Ecol. Modell 188(2–4):448–460

    Article  Google Scholar 

  • Jung S, Im E, Han S (2012) The effect of topography and sea surface temperature on heavy snowfall in the Yeongdong region: a case study with high resolution WRF simulation. Asia-Pacific J Atmos Sci 48(3):259–273

    Article  Google Scholar 

  • Paluch IR, McFarquhar G, Lenschow DH, Zhu Y (1999) Marine boundary layers associated with ocean upwelling over the eastern equatorial Pacific ocean. J Geophys Res 104:30913–30936

    Article  Google Scholar 

  • Perlin N, Skyllingstad ED, Samelson RM (2011) Coastal atmospheric circulation around an idealized cape during wind-driven upwelling studied from a coupled ocean-atmosphere model. Mon Weather Rev 139(3):809–829

    Article  Google Scholar 

  • Rahn DA, Parish TR, Leon D (2014) Coastal jet adjustment near point conception, california, with opposing wind in the bight. Mon Weather Rev 142:1344–1360

    Article  Google Scholar 

  • Ranjha R, Svensson G, Tjernstrom M, Semedo A (2013) Global distribution and seasonal variability of coastal low-level jets derived from ERA-Interim reanalysis. Tellus A 65:20412

    Article  Google Scholar 

  • Ribeiro FND, Soares J, Oliveira AP (2011a) The co-influence of the sea breeze and the coastal upwelling at Cabo Frio: a numerical investigation using coupled models. Braz J Oceanogr 59(2):131–144

    Article  Google Scholar 

  • Ribeiro FND, Soares J, Oliveira AP (2011b) A coupled numerical model to investigate the air-sea interaction at the coastal upwelling area of Cabo Frio, Brazil. Environ Fluid Mech 11:551–572

    Article  Google Scholar 

  • Rodrigues RR, Lorenzzetti JA (2001) A numerical study of the effects of bottom topography and coastline geometry on the Southeast Brazilian coastal upwelling. Cont Shelf Res 21:371–394

    Article  Google Scholar 

  • Rogers D, Dorman C, Edwards K, Brooks I, Melville K, Burk S, Thompson W, Holt T, Strom L, Tjernstrom M, Grisogono B, Bane J, Nuss W, Morley B, Schanot (1998) Highlights of coastal waves 1996. Bull Am Meteorol Soc 79:1307–1326

    Article  Google Scholar 

  • Thunis P, Clappier A (2000) Formulation and evaluation of a nonhydrostatic mesoscale vorticity model (TVM). Mon Weather Rev 128:3236–3251

    Article  Google Scholar 

  • Wang Q, Kalogiros JA, Ramp SR, Paduan JD, Buzorius G, Jonsson H (2011) Wind stress curl and coastal upwelling in the area of monterey bay observed during AOSN-II. J Phys Oceanogr 41:857–877

    Article  Google Scholar 

  • Zilitinkevich SS, Esau IN (2007) Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 125:193–205

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the Brazilian Research Agency CNPq (Grants 142007/2005-6, 305357/2012-3, and 309079/2013-6) and the support of the University of São Paulo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Soares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, F.N.D., Soares, J. & Oliveira, A.P. Sea-Breeze and Topographic Influences on the Planetary Boundary Layer in the Coastal Upwelling Area of Cabo Frio (Brazil). Boundary-Layer Meteorol 158, 139–150 (2016). https://doi.org/10.1007/s10546-015-0085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0085-x

Keywords

Navigation