Boundary-Layer Meteorology

, Volume 158, Issue 2, pp 311–330 | Cite as

Characterization of the Marine Boundary Layer and the Trade-Wind Inversion over the Sub-tropical North Atlantic

  • J. Carrillo
  • J. C. Guerra
  • E. Cuevas
  • J. Barrancos
Article

Abstract

The stability of the lower troposphere along the east side of the sub-tropical North Atlantic is analyzed and characterized using upper air meteorological long-term records at the Canary Islands (Tenerife), Madeira (Madeira) and Azores (Terceira) archipelagos. The most remarkable characteristic is the strong stratification observed in the lower troposphere, with a strengthening of stability centred at levels near 900 and 800 hPa in a significant percentage of soundings (ranging from 17 % in Azores to 33 % in Güimar, Canary Islands). We show that this double structure is associated with the top of the marine boundary layer (MBL) and the trade-wind inversion (TWI) respectively. The top of the MBL coincides with the base of the first temperature inversion (\(\approx \)900 hPa) where a sharp change in water vapour mixing ratio is observed. A second temperature inversion is found near 800 hPa, which is characterized by a large directional wind shear just above the inversion layer, tied to the TWI. We find that seasonal and latitudinal variations of the height and strength of both temperature inversions are driven by large-scale subsiding air from the upper troposphere associated with the descent branch of the Hadley cell. Increased general subsidence in summertime enhances stability in the lower troposphere, more markedly in the southern stations, where the inversion-layer heights are found at lower levels enhancing the main features of these two temperature inversions. A simple conceptual model that explains the lower tropospheric inversion enhancement by subsidence is proposed.

Keywords

Marine boundary layer Radiosondes Subsidence  Sub-tropical troposphere Temperature inversion Trade-wind inversion 

Supplementary material

10546_2015_81_MOESM1_ESM.docx (12 kb)
S1 Statistical comparison of temperature series at three pressure levels between Santa Cruz (1997-2001) and Güimar (2003-2007). Results of Kolmógorov–Smirnov and Mann-Whitney nonparametric tests. (Doc 13 KB)
10546_2015_81_MOESM2_ESM.docx (14 kb)
S2 Percentage of superadiabatic lapse rate (% SA) and fictitious inversion layers (% F). (Doc 15 KB)
10546_2015_81_MOESM3_ESM.docx (12 kb)
S3 Number and percentage of soundings in which the number of simultaneous inversions ʽNIʼ is zero, one, two, or more than two, within the 1000-700 hPa range, at each station. (Doc 13 KB)
10546_2015_81_MOESM4_ESM.ps (173 kb)
S4 Base height of MBL inversion (MBLI) (*) and trade-wind inversion (TWI) (□) vs vertical velocity (hPa s-1) in the 700-hPa range, as in Fig. 5 (right) at Azores, Madeira and Canary Islands (Güimar). (ps 173 KB)

References

  1. Albrecht BA (1984) A model study of downstream variations of the thermodynamic structure of the trade winds. Tellus 36A:187–202CrossRefGoogle Scholar
  2. Alappattu DP, Kunhikrishnan PK (2010) Observations of the thermodynamic structure of marine atmospheric boundary layer over Bay of Bengal, Northern Indian Ocean and Arabian Sea during premonsoon period. J Atmos Sol Terr Phy 72:1318–1326. doi:10.1016/j.jastp.2010.07.011 CrossRefGoogle Scholar
  3. Arya SP (1988) Introduction to micrometeorology. Academic Press Inc./Harcourt Brace Jovanovich Publishers, San Diego, CA: 307 ppGoogle Scholar
  4. Augstein E, Riehl H, Ostapoff F, Wagner V (1973) Mass and energy transports in an undisturbed atlantic trade-wind flow. Mon Weather Rev 101:101–111CrossRefGoogle Scholar
  5. Busch N, Ebel U, Kraus H, Schaller E (1982) The structure of the subpolar inversion-capped ABL. Arch Meteor Geophys Bioklimatol 31A:1–18CrossRefGoogle Scholar
  6. Cao G, Giambelluca TW, Stevens DE, Schroeder TA (2007) Inversion variability in the Hawaiian trade wind regime. J Clim 20:1145–1160CrossRefGoogle Scholar
  7. Ciesielski PE, Schubert WH, Johnson RH (2001) Diurnal variability of the marine boundary layer during ASTEX. J Atmos Sci 58:2355–2376CrossRefGoogle Scholar
  8. Cuevas E (1995) Estudio del comportamiento del ozono troposférico en el observatorio de Izaña (Tenerife) y su relación con la dinámica atmosférica. Ph D Thesis, Universidad Complutense de MadridGoogle Scholar
  9. Cuevas E, González Y, Rodríguez S, Guerra JC, Gómez-Peláez AJ, Alonso-Pérez S, Bustos J, Milford C (2013) Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere. Atmos Chem Phys 13:1973–1998CrossRefGoogle Scholar
  10. Dorta P (1994) Las inversiones térmicas en canarias. Investigaciones Geográficas 1996(15):109–126Google Scholar
  11. Dunion JP, Marron CS (2008) A reexamination of the Jordan mean tropical sounding based on awareness of the Saharan Air Layer: results from 2002. J Clim 21:5242–5253CrossRefGoogle Scholar
  12. Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56:179CrossRefGoogle Scholar
  13. Grindinger CM (1992) Temporal variability of the trade wind inversion: measured with a boundary layer vertical profiler. MS thesis, Department of Meteorology, University of Hawaii at Manoa, 93 ppGoogle Scholar
  14. Gutnick M (1958) Climatology of the trade-wind inversion in the Caribbean. Bull Am Meteorol Soc 39:410–420Google Scholar
  15. Hartmann D, Ockert-Bell M, Michelsen M (1992) The effect of cloud type on Earth’s energy balance: global analysis. J Clim 5:1281–1304CrossRefGoogle Scholar
  16. Hodge MW (1956) Superadiabatic lapse rates of temperature in radiosonde observations. Mon Weather Rev 84:103–106CrossRefGoogle Scholar
  17. Hoskins BJ, Draghici I, Davies HC (1978) A new look at the \(\upomega \)-equation. Q J R Meteorol Soc 104:31–38CrossRefGoogle Scholar
  18. Jaatinen J, Kajosaari S (2000) Loran-C based windfinding in Meteorology. 29th annual convention & technical syposium of the international LORAN association (ILA). November 13–15, 2000, Washington DCGoogle Scholar
  19. Johnson RH, Ciesielski PE, Kenneth AH (1995) Tropical inversions near the \(0\,^{{\circ }}\text{ C }\) level. J Atmos Sci 53(13):1838–1855CrossRefGoogle Scholar
  20. Johnson RH, Rickenbach TM, Rutledge SA, Ciesielski PE, Schubert WH (1999) Trimodal characteristics of tropical convection. J Clim 12:2397–2418CrossRefGoogle Scholar
  21. Karlsson J, Svensson G, Cardoso S, Teixeira J, Paradise S (2010) Subtropical cloud-regime transitions: boundary layer depth and cloud-top height evolution in models and observations. J Appl Meteorol Climatol 49(9):1845–1858. doi:10.1175/2010JAMC2338.1 CrossRefGoogle Scholar
  22. Klein SA (1997) Synoptic variability of low-cloud properties and meteorological parameters in the subtropical trade wind boundary layer. J Climate 10(2018–2039):2018. doi:10.1175/1520-0442(1997)010:SVOLCP.2.0.CO;2 CrossRefGoogle Scholar
  23. Kloesel KA, Albrecht BA (1989) Low-level inversions over the tropical Pacific-thermodynamic structure of the boundary layer and the above-inversion moisture structure. Mon Weather Rev 117:87–101CrossRefGoogle Scholar
  24. Ma CC, Mechoso CR, Robertson A, Arakawa A (1996) Peruvian stratus clouds and the tropical Pacific circulation: a coupled ocean-atmosphere GCM study. J Clim 9:1635–1645CrossRefGoogle Scholar
  25. Malkus JS (1956) On the maintenance of the trade winds. Tellus 8:335–350CrossRefGoogle Scholar
  26. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:52–54CrossRefGoogle Scholar
  27. Martín JL, Bethencourt J, Cuevas-Agulló E (2012) Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944. Climatic change. doi:10.1007/s10584-012-0407-7
  28. Marzol MV (2001) El Clima. In: Fernández-Palacios JM, Martín-Esquivel JL (eds) “Naturaleza de las Islas Canarias. Ecología y conservación”. Publicaciones Turquesa, S/C de Tenerife: pp 87–93Google Scholar
  29. Marzol MV, Yanes A, Romero C, Brito de Azevedo E, Prada S, Martins A (2006) Caratéristiques des précipitations dans les îles de la Macaronesia (Açores, Madére, Canaries et Cap Vert). XIX Colloque de l’Association Internationale de Climatologie, Épernay (Francia), pp 415–420Google Scholar
  30. Mestre-Barceló A, Chazarra-Bernabé A, Pires V, Cunha S, Silva A, Marques J, Carvalho F, Mendes M, Neto J (2012) Climate atlas of the Archipelagos of the Canary Islands, Madeira and Azores. Air temperature and precipitation (1971–2000). Agencia Estatal de Meteorología and Instituto de Meteorologia de Portugal (eds), 80 pp, NIPO: 281-12-006-XGoogle Scholar
  31. Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216CrossRefGoogle Scholar
  32. Poon HT, Kwok YH, Sin KC (2000) Comparison of LORAN-C and GPS radiosonde measurements in Hong Kong. Technical Note No. 98, Hong Kong Observatory: 21 ppGoogle Scholar
  33. Press WH, Teukolshy SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN: the art of scientific computing. Cambridge University Press, Cambridge 963 ppGoogle Scholar
  34. Priestly MB (1994) Spectral analysis and time series. Academic Press, London 890 ppGoogle Scholar
  35. Philander S, Gu D, Halpern D, Lambert G, Lau NC, Li T, Pacanowski R (1996) Why the ITCZ is mostly north of the equator. J Clim 9:2958–2972CrossRefGoogle Scholar
  36. Prospero JM, Carlson TN (1981) Saharan air outbreaks over the tropical North Atlantic. Pure Appl Phys 119:667–691Google Scholar
  37. Rémillard J, Kollias P, Luke E, Wood R (2012) Marine boundary layer cloud observations in the Azores. J Clim 25:7381–7398. doi:10.1175/JCLI-D-11-00610.1 CrossRefGoogle Scholar
  38. Riehl H (1979) Climate and weather in the tropics. Academic Press, London 623 ppGoogle Scholar
  39. Rodríguez S (1999) Comparación de las variaciones de ozono superficial asociadas a procesos de transporte sobre y bajo la inversión de temperatura subtropical en Tenerife. Degree Dissertation, University of La Laguna, Tenerife, Canary Islands, SpainGoogle Scholar
  40. Rodríguez S, Alastuey A, Alonso-Pérez S, Querol X, Cuevas E, Abreu-Afonso J, Viana M, Pérez N, Pandolfi M, de la Rosa (2011) Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer. Atmos Chem Phys 11:6663–6685. doi:10.5194/acp-11-6663-2011 CrossRefGoogle Scholar
  41. Rouault M, Lee-Thorp AM, Lutjeharms JRE (1999) The Atmospheric Boundary Layer above the Agulhas current during alongcurrent winds. J Phys Oceanogr 30:40–50CrossRefGoogle Scholar
  42. Santos FD, Valente MA, Miranda PMA, Azevedo EB, Tome AR, Coelho F (2004) Climate change scenarios in the Azores and Madeira Islands. World Res Rev 16(4):473–491Google Scholar
  43. Schubert WH, Ciesielski PE, Richardson CL, Johnson H (1995) Dynamical adjustment of the trade wind inversion layer. J Atmos Sci 52(16):2941–2952CrossRefGoogle Scholar
  44. Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027CrossRefGoogle Scholar
  45. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24Google Scholar
  46. Sempreviva AM, Gryning SE (2000) Mixing height over water and its role on the correlation between temperature and humidity fluctuations in the unstable surface layer. Boundary-Layer Meteorol 97:273–291CrossRefGoogle Scholar
  47. Slonaker RL, Schwartz BE, Emery WJ (1996) Occurrence of nonsurface superadiabatic lapse rates within RAOB data. Wea Forecast 11:350–359CrossRefGoogle Scholar
  48. Schultz DM, Schumacher PN, Doswell CA (2000) The intricacies of instabilities. Mon Weather Rev 128:4143–4148CrossRefGoogle Scholar
  49. Stone PH, Carlson JH (1979) Atmospheric lapse rate regimes and their parameterization. J Atmos Sci 36:415–423CrossRefGoogle Scholar
  50. Stull RB (1988) An introduction to boundary-layer meteorology. Kluwer, Dordrecht: 670 ppGoogle Scholar
  51. Sun DZ, Lindzen RS (1993) Distribution of tropical troposphericwater vapor. J Atmos Sci 50:1643–1660CrossRefGoogle Scholar
  52. Sutcliffe RC (1947) A contribution to the problem of development. Q J R Meteorol Soc 73:370–383CrossRefGoogle Scholar
  53. Tran LT (1995) Relationship between the inversion and rainfall on the Island of Maui. MS thesis, Department of Geography, University of Hawaii at Manoa: 115 ppGoogle Scholar
  54. Tullot F (1956) El tiempo atmosférico de las Islas Canarias. Publicaciones Serie A (Memorias) del Instituto Nacional de Meteorología 26:15–23Google Scholar
  55. Von Engeln A, Teixeira J, Wickert J, Buehler SA (2005) Using CHAMP radio occultation data to determine the top altitude of the Planetary Boundary Layer. Geophys Res Lett 32:L06815. doi:10.1029/2004GL022168 Google Scholar
  56. Wang J, Rossow WB (1995) Determination of cloud vertical structure from upper-air observations. J Appl Meteorol 34:2243–2258CrossRefGoogle Scholar
  57. Wood R, Bretherton CS (2006) On the relationship between stratiform low cloud cover and lower-tropospheric stability. J Clim 19:6425–6432. doi:10.1175/JCLI3988.1 CrossRefGoogle Scholar
  58. Yuter SE, Houze RA Jr (1995) Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: frecuency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon Weather Rev 123:1941–1963CrossRefGoogle Scholar
  59. Zhang YH, Zhang SD, Yi F (2009) Intensive radiosonde observations of lower tropospheric inversion layers over Yichang, China. J Atmos Sol Terr Phys 71:180–190. doi:10.1016/j.jastp.2008.10.008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • J. Carrillo
    • 2
  • J. C. Guerra
    • 2
  • E. Cuevas
    • 1
    • 2
  • J. Barrancos
    • 3
  1. 1.Izaña Atmospheric Research Centre (IARC)Agencia Estatal de Meteorología (AEMET)Santa Cruz de TenerifeSpain
  2. 2.Hydrometeorology Research Group (GRIHM)La Laguna University (ULL)Santa Cruz de TenerifeSpain
  3. 3.Environmental Research DivisionInstituto Tecnológico de Energías Renovables (ITER)Granadilla de AbonaSpain

Personalised recommendations