Boundary-Layer Meteorology

, Volume 158, Issue 1, pp 105–123 | Cite as

Influence of Leaf Area Index on the Radiometric Resistance to Heat Transfer

  • Lei Zhao
  • Xuhui Lee
  • Andrew E. Suyker
  • Xuefa Wen


Sensible heat flux is an important component of the surface energy balance. Land surface models often use the radiative surface temperature instead of the aerodynamic temperature to predict the surface sensible flux, because the former is much easier to observe by remote sensing or to compute from the surface energy balance equation. Here, measurements from 44 FLUXNET sites are used to examine the stability and leaf area index (LAI) dependence of the radiometric resistance, a resistance that should be included in the bulk transfer method if the radiometric temperature is used for the flux calculation. Results show that the radiometric resistance is much higher under stable conditions than under unstable conditions. In unstable conditions, the radiometric resistance is highly sensitive to LAI, decreasing exponentially as LAI increases. Omission of the radiometric resistance from the bulk transfer method causes a large overestimation in the sensible heat flux, especially for low-LAI surfaces and under unstable conditions.


Aerodynamic temperature Leaf area index Radiative surface temperature Radiometric resistance Sensible heat flux 



This research was supported in part by the Ministry of Education of China (grant PCSIRT). The first author also acknowledges support by a Yale University graduate fellowship.

Supplementary material

10546_2015_70_MOESM1_ESM.pdf (6.3 mb)
Supplementary material 1 (pdf 6437 KB)
10546_2015_70_MOESM2_ESM.docx (10 kb)
Supplementary material 2 (docx 10 KB)


  1. Baldocchi D, Vogel CA, Hall B (1997) Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy. J Geophys Res 102(D24):28939–28951CrossRefGoogle Scholar
  2. Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30(3):327–341CrossRefGoogle Scholar
  3. Bergeron O, Margolis HA, Black TA, Coursolle C, Dunn AL, Barr AG, Wofsy SC (2007) Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada. Glob Change Biol 13(1):89–107CrossRefGoogle Scholar
  4. Blanken PD, Black TA, Yang PC, Neumann HH, Nesic Z, Staebler R, den Hartog G, Novak MD, Lee X (1997) Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. J Geophys Res 102(D24):28915–28927CrossRefGoogle Scholar
  5. Brutsaert W (1992) Stability correction functions for the mean wind-speed and temperature in the unstable surface-layer. Geophys Res Lett 19(5):469–472CrossRefGoogle Scholar
  6. Brutsaert W, Sugita M (1992) Regional surface fluxes from satellite-derived surface temperatures (AVHRR) and radiosonde profiles. Bound-Layer Meteorol 58(4):355–366CrossRefGoogle Scholar
  7. Chen F, Zhang Y (2009) On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys Res Lett 36:L10404Google Scholar
  8. Chen SP, Chen JQ, Lin GH, Zhang WL, Miao HX, Wei L, Huang JH, Han XG (2009) Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agric For Meteorol 149(11):1800–1809CrossRefGoogle Scholar
  9. Choudhury BJ, Reginato RJ, Idso SB (1986) An analysis of infrared temperature observations over wheat and calculation of latent-heat flux. Agric For Meteorol 37(1):75–88CrossRefGoogle Scholar
  10. Clark KL, Skowronski N, Hom J (2010) Invasive insects impact forest carbon dynamics. Glob Change Biol 16(1):88–101CrossRefGoogle Scholar
  11. Coursolle C, Margolis HA, Barr AG, Black TA, Amiro BD, McCaughey JH, Flanagan LB, Lafleur PM, Roulet NT, Bourque CPA, Arain MA, Wofsy SC, Dunn A, Morgenstern K, Orchansky AL, Bernier PY, Chen JM, Kidston J, Saigusa N, Hedstrom N (2006) Late-summer carbon fluxes from Canadian forests and peatlands along an east-west continental transect. Can J Forest Res. 36(3):783–800CrossRefGoogle Scholar
  12. Davis KJ, Bakwin PS, Yi CX, Berger BW, Zhao CL, Teclaw RM, Isebrands JG (2003) The annual cycles of CO\(_2\) and H\(_2\)O exchange over a northern mixed forest as observed from a very tall tower. Glob Change Biol 9(9):1278–1293CrossRefGoogle Scholar
  13. Dore S, Kolb TE, Montes-Helu M, Sullivan BW, Winslow WD, Hart SC, Kaye JP, Koch GW, Hungate BA (2008) Long-term impact of a stand-replacing fire on ecosystem CO(2) exchange of a ponderosa pine forest. Glob Change Biol 14(8):1801–1820CrossRefGoogle Scholar
  14. Fischer ML, Billesbach DP, Berry JA, Riley WJ, Torn MS (2007) Spatiotemporal variations in growing season exchanges of CO\(_2\), H\(_2\)O, and sensible heat in agricultural fields of the Southern Great Plains. Earth Interact 11(17):1–21CrossRefGoogle Scholar
  15. Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge, 336 ppGoogle Scholar
  16. Garratt JR, Hicks BB (1973) Momentum, heat and water vapour transfer to and from natural and artificial surfaces. Q J R Meteorol Soc 99(422):680–687CrossRefGoogle Scholar
  17. Garratt JR, Francey R (1978) Bulk characteristics of heat transfer in the unstable, baroclinic atmospheric boundary layer. Bound-Layer Meteorol 15(4):399–421CrossRefGoogle Scholar
  18. Gilmanov TG, Tieszen LL, Wylie BK, Flanagan LB, Frank AB, Haferkamp MR, Meyers TP, Morgan JA (2005) Integration of CO\(_2\) flux and remotely-sensed data for primary production and ecosystem respiration analyses in the Northern Great Plains: potential for quantitative spatial extrapolation. Glob Ecol Biogeogr 14(3):271–292CrossRefGoogle Scholar
  19. Gu LH, Meyers T, Pallardy SG, Hanson PJ, Yang B, Heuer M, Hosman KP, Riggs JS, Sluss D, Wullschleger SD (2006) Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site. J Geophys Res 111(D16):D16102Google Scholar
  20. Hall FG, Huemmrich KF, Goetz SJ, Sellers PJ, Nickeson JE (1992) Satellite remote-sensing of surface-energy balance—success, failures, and unresolved issues in fife. J Geophys Res 97(D17):19061–19089CrossRefGoogle Scholar
  21. Hollinger DY, Aber J, Dail B, Davidson EA, Goltz SM, Hughes H, Leclerc MY, Lee JT, Richardson AD, Rodrigues C, Scott NA, Achuatavarier D, Walsh J (2004) Spatial and temporal variability in forest-atmosphere CO\(2\) exchange. Glob Change Biol 10(10):1689–1706CrossRefGoogle Scholar
  22. Hollinger DY, Goltz SM, Davidson EA, Lee JT, Tu K, Valentine HT (1999) Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Glob Change Biol 5(8):891–902CrossRefGoogle Scholar
  23. Hollinger DY, Ollinger SV, Richardson AD, Meyers TP, Dail DB, Martin ME, Scott NA, Arkebauer TJ, Baldocchi DD, Clark KL, Curtis PS, Davis KJ, Desai AR, Dragoni D, Goulden ML, Gu L, Katul GG, Pallardy SG, Paw KT, Schmid HP, Stoy PC, Suyker AE, Verma SB (2010) Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Glob Change Biol 16(2):696–710CrossRefGoogle Scholar
  24. Hollinger SE, Bernacchi CJ, Meyers TP (2005) Carbon budget of mature no-till ecosystem in North Central Region of the United States. Agric For Meteorol 130(1–2):59–69CrossRefGoogle Scholar
  25. Humphreys ER, Black TA, Ethier GJ, Drewitt GB, Spittlehouse DL, Jork EM, Nesic Z, Livingston NJ (2003) Annual and seasonal variability of sensible and latent heat fluxes above a coastal Douglas-fir forest, British Columbia, Canada. Agric For Meteorol 115(1–2):109–125CrossRefGoogle Scholar
  26. Humphreys ER, Black TA, Morgenstern K, Cai TB, Drewitt GB, Nesic Z, Trofymow JA (2006) Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcut harvesting. Agric For Meteorol 140(1–4):6–22CrossRefGoogle Scholar
  27. Jarvis PG, Massheder JM, Hale SE, Moncrieff JB, Rayment M, Scott SL (1997) Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. J Geophys Res 102(D24):28953–28966CrossRefGoogle Scholar
  28. Krishnan P, Meyers TP, Scott RL, Kennedy L, Heuer M (2012) Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America. Agric For Meteorol 153:31–44CrossRefGoogle Scholar
  29. Kustas WP, Anderson M (2009) Advances in thermal infrared remote sensing for land surface modeling. Agric For Meteorol 149(12):2071–2081CrossRefGoogle Scholar
  30. Kustas WP, Anderson MC, Norman JM, Li F (2007) Utility of radiometric–aerodynamic temperature relations for heat flux estimation. Bound-Layer Meteorol 122(1):167–187CrossRefGoogle Scholar
  31. Kustas WP, Choudhury BJ, Moran MS, Reginato RJ, Jackson RD, Gay LW, Weaver HL (1989) Determination of sensible heat-flux over sparse canopy using thermal infrared data. Agric For Meteorol 44(3–4):197–216CrossRefGoogle Scholar
  32. Kustas WP, Jackson T, Prueger J, Hatfield J, Anderson M (2003) Remote sensing field experiments evaluate retrieval algorithms and land-atmosphere modeling. Eos Trans Amer Geophys Union 84(45):485–493CrossRefGoogle Scholar
  33. Law BE, Turner D, Campbell J, Sun OJ, Van Tuyl S, Ritts WD, Cohen WB (2004) Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USA. Glob Change Biol 10(9):1429–1444CrossRefGoogle Scholar
  34. Lee XH, Griffis TJ, Baker JM, Billmark KA, Kim K, Welp LR (2009) Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Glob Biogeochem Cycles. 23:GB1002Google Scholar
  35. Lhomme JP, Katerji N, Perrier A, Bertolini JM (1988) Radiative surface-temperature and convective flux calculation over crop canopies. Bound-Layer Meteorol 43(4):383–392CrossRefGoogle Scholar
  36. Ma SY, Baldocchi DD, Xu LK, Hehn T (2007) Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric For Meteorol 147(3–4):157–171CrossRefGoogle Scholar
  37. Mahrt L, Vickers D (2002) Relationship of area-averaged carbon dioxide and water vapour fluxes to atmospheric variables. Agric For Meteorol 112(3–4):195–202CrossRefGoogle Scholar
  38. Mahrt L, Vickers D (2004) Bulk formulation of the surface heat flux. Bound-Layer Meteorol 110(3):357–379CrossRefGoogle Scholar
  39. Massman WJ (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 104(3):185–198CrossRefGoogle Scholar
  40. Matsushima D (2005) Relations between aerodynamic parameters of heat transfer and thermal-infrared thermometry in the bulk surface formulation. J Meteorol Soc Jpn 83(3):373–389CrossRefGoogle Scholar
  41. McNaughton KG, Vandenhurk BJJM (1995) A lagrangian revision of the resistors in the 2-layer model for calculating the energy budget of a plant canopy. Bound-Layer Meteorol 74(3):261–288CrossRefGoogle Scholar
  42. Molder M, Lindroth A (2001) Dependence of \(\text{ kB }^{-1}\) factor on roughness Reynolds number for barley and pasture. Agric For Meteorol 106(2):147–152CrossRefGoogle Scholar
  43. Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott-Denton LE, Sparks K, Huxman TE (2002) Carbon sequestration in a high-elevation, subalpine forest. Glob Change Biol 8(5):459–478CrossRefGoogle Scholar
  44. Monteith JL (1973) Principles of environmental physics. American Elsevier Publications, New YorkGoogle Scholar
  45. Mu QZ, Zhao MS, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115(8):1781–1800CrossRefGoogle Scholar
  46. Noormets A, Gavazzi MJ, McNulty SG, Domec JC, Sun G, King JS, Chen JQ (2010) Response of carbon fluxes to drought in a coastal plain loblolly pine forest. Glob Change Biol 16(1):272–287CrossRefGoogle Scholar
  47. Raupach MR (1994) Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Bound-Layer Meteorol 71(1–2):211–216CrossRefGoogle Scholar
  48. Schmid HP, Grimmond CSB, Cropley F, Offerle B, Su HB (2000) Measurements of CO\(_2\) and energy fluxes over a mixed hardwood forest in the mid-western United States. Agric For Meteorol 103(4):357–374CrossRefGoogle Scholar
  49. Schmid HP, Su HB, Vogel CS, Curtis PS (2003) Ecosystem-atmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan. J Geophys Res 108(D14):4417Google Scholar
  50. Schmidt A, Hanson C, Kathilankal J, Law BE (2011) Classification and assessment of turbulent fluxes above ecosystems in North-America with self-organizing feature map networks. Agric For Meteorol 151(4):508–520CrossRefGoogle Scholar
  51. Scott RL, Jenerette GD, Potts DL, Huxman TE (2009) Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J Geophys Res 114:G04004Google Scholar
  52. Stewart JB, Kustas WP, Humes KS, Nichols WD, Moran MS, Debruin HAR (1994) Sensible heat-flux radiometric surface-temperature relationship for 8 semiarid areas. J Appl Meteorol 33(9):1110–1117CrossRefGoogle Scholar
  53. Su Z, Schmugge T, Kustas WP, Massman WJ (2001) An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J Appl Meteorol 40(11):1933–1951CrossRefGoogle Scholar
  54. Sugita M, Brutsaert W (1990) Regional surface fluxes from remotely sensed skin temperature and lower boundary-layer measurements. Water Resour Res 26(12):2937–2944CrossRefGoogle Scholar
  55. Sun JL, Mahrt L (1995) Determination of surface fluxes from the surface radiative temperature. J Atmos Sci 52(8):1096–1106CrossRefGoogle Scholar
  56. Suyker AE, Verma SB, Burba GG, Arkebauer TJ (2005) Gross primary production and ecosystem respiration of irrigated maize and irrigated soybean during a growing season. Agric For Meteorol 131(3–4):180–190CrossRefGoogle Scholar
  57. Suyker AE, Verma SB, Burba GG, Arkebauer TJ, Walters DT, Hubbard KG (2004) Growing season carbon dioxide exchange in irrigated and rainfed maize. Agric For Meteorol 124(1–2):1–13CrossRefGoogle Scholar
  58. Syed KH, Flanagan LB, Carlson PJ, Glenn AJ, Van Gaalen KE (2006) Environmental control of net ecosystem CO\(_2\) exchange in a treed, moderately rich fen in northern Alberta. Agric For Meteorol 140(1–4):97–114CrossRefGoogle Scholar
  59. Thom AS (1972) Momentum, mass and heat-exchange of vegetation. Q J R Meteorol Soc 98(415):124–134CrossRefGoogle Scholar
  60. Thom AS, Stewart JB, Oliver HR, Gash JHC (1975) Comparison of aerodynamic and energy budget estimates of fluxes over a pine forest. Q J R Meteorol Soc 101(427):93–105CrossRefGoogle Scholar
  61. Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Golstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric For Meteorol 113(1–4):185–222CrossRefGoogle Scholar
  62. Troufleau D, Lhomme JP, Monteny B, Vidal A (1997) Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation.1. An experimental analysis of the kB(-1) parameter. J Hydrol 189(1–4):815–838CrossRefGoogle Scholar
  63. Verhoef A, DeBruin HAR, VandenHurk BJJM (1997) Some practical notes on the parameter kB(-1) for sparse vegetation. J Appl Meteorol 36(5):560–572CrossRefGoogle Scholar
  64. Vickers D, Thomas C, Law BE (2009) Random and systematic CO\(_2\) flux sampling errors for tower measurements over forests in the convective boundary layer. Agric For Meteorol 149(1):73–83CrossRefGoogle Scholar
  65. Voogt JA, Grimmond CSB (2000) Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J Appl Meteorol 39(10):1679–1699CrossRefGoogle Scholar
  66. Wilson KB, Meyers TP (2001) The spatial variability of energy and carbon dioxide fluxes at the floor of a deciduous forest. Bound-Layer Meteorol 98(3):443–473CrossRefGoogle Scholar
  67. Wilson TB, Meyers TP (2007) Determining vegetation indices from solar and photosynthetically active radiation fluxes. Agric For Meteorol 144(3–4):160–179CrossRefGoogle Scholar
  68. Yang K, Koike T, Yang DW (2003) Surface flux parameterization in the Tibetan Plateau. Bound-Layer Meteorol 106(2):245–262CrossRefGoogle Scholar
  69. Zhang G, Zhou GS, Chen F, Barlage M, Xue LL (2014) A trial to improve surface heat exchange simulation through sensitivity experiments over a desert steppe site. J Hydrometeorol 15(2):664–684CrossRefGoogle Scholar
  70. Zheng WZ, Wei HL, Wang Z, Zeng XB, Meng J, Ek M, Mitchell K, Derber J (2012) Improvement of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact on satellite data assimilation. J Geophys Res 117:D06117Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Lei Zhao
    • 1
    • 2
  • Xuhui Lee
    • 1
    • 2
  • Andrew E. Suyker
    • 3
  • Xuefa Wen
    • 4
  1. 1.Yale-NUIST Center on Atmospheric EnvironmentNanjing University of Information, Science and TechnologyNanjingChina
  2. 2.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA
  3. 3.School of Natural ResourcesUniversity of NebraskaLincolnUSA
  4. 4.Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations