Skip to main content
Log in

Observations of Near-Surface Heat-Flux and Temperature Profiles Through the Early Evening Transition over Contrasting Surfaces

Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Near-surface turbulence data from the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program are used to study countergradient heat fluxes through the early evening transition. Two sites, subjected to similar large-scale forcing, but with vastly different surface and sub-surface characteristics, are considered. The Playa site is situated at the interior of a large dry lakebed desert with high sub-surface soil moisture, shallow water table, and devoid of vegetation. The Sagebrush site is located in a desert steppe region with sparse vegetation and little soil moisture. Countergradient sensible heat fluxes are observed during the transition at both sites. The transition process is both site and height dependent. At the Sagebrush site, the countergradient flux at 5 m and below occurs when the sign change of the sensible heat flux precedes the local temperature gradient sign change. For 10 m and above, the countergradient flux occurs when the sign change of the sensible heat flux follows the local temperature gradient sign change. At the Playa site, the countergradient flux at all tower levels occurs when the sign change of the sensible heat flux follows the local temperature gradient sign change. The phenomenon is explained in terms of the mean temperature and heat-flux evolution. The temperature gradient sign reversal is a top-down process while the flux reversal occurs nearly simultaneously at all heights. The differing countergradient behaviour is primarily due to the different subsurface thermal characteristics at the two sites. The combined high volumetric heat capacity and high thermal conductivity at the Playa site lead to small vertical temperature gradients that affect the relative magnitude of terms in the heat-flux tendency equation. A critical ratio of the gradient production to buoyant production of sensible heat flux is suggested so as to predict the countergradient behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  • Acevedo OC, Fitzjarrald DR (2001) The early evening surface-layer transition: temporal and spatial variability. J Atmos Sci 58:2650–2667

    Article  Google Scholar 

  • Acevedo OC, Fitzjarrald DR (2003) In the core of the night—effects of intermittent mixing on a horizontally heterogeneous surface. Boundary-Layer Meteorol 106:1–33

    Article  Google Scholar 

  • Angevine WM (2007) Transitional, entraining, cloudy, and coastal boundary layers. Acta Geophys 56:2–20

    Google Scholar 

  • Aubinet M, Vesala T, Papale D (2012) Eddy covariance—a practical guide to measurement and data analysis. Springer, Dordrecht, 438 pp

  • Blay-Carreras E, Pardyjak ER, Pino D, Alexander DC, Lohou F, Lothon M (2014) Countergradient heat flux observations during the evening transition period. Atmos Chem Phys 14:9077–9085

    Article  Google Scholar 

  • Blay-Carreras E, Pardyjak ER, Pino D, Hoch SW, Cuxart J, Martinez D, Reuder J (2015) Lifted temperature minimum during the atmospheric evening transition. Atmos Chem Phys 15(1):1–11. doi:10.5194/acp-15-1-2015. http://www.atmos-chem-phys-discuss.net/14/13731/2014/

  • Brown AR, Cederwall RTR, Chlond A, Duynkerke P, Golaz JC, Khairoutdinov M, Lewellen DC, Lock AP, MacVean MK, Moeng CH, Neggers RAJ, Siebesma AP, Stevens B (2002) Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q J R Meteorol Soc 128:1075–1093

    Article  Google Scholar 

  • Caughey SJ, Kaimal JC (1977) Vertical heat flux in the convective boundary layer. Q J R Meteorol Soc 103:811–815

    Article  Google Scholar 

  • Caughey SJ, Wyngaard JC, Kaimal JC (1979) Turbulence in the evolving stable boundary layer. J Atmos Sci 36:1041–1052

    Article  Google Scholar 

  • Chapra S, Canale R (2010) Numerical methods for engineers, 6th edn. McGraw-Hill Higher Education, Boston 658 pp

    Google Scholar 

  • Cole GS, Fernando HJS (1998) Some aspects of the decay of convective turbulence. Fluid Dyn Res 23:161–176

    Article  Google Scholar 

  • Comte-Bellot G, Corrsin S (1971) Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, isotropic turbulence. J Fluid Mech 48:273–337

    Article  Google Scholar 

  • Deardorff J (1970) Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J Atmos Sci 27:1211–1213

    Article  Google Scholar 

  • Dyer AJ, Hicks BB (1970) Flux–gradient relationships in the constant flux layer. Q J R Meteorol Soc 96:715–721

    Article  Google Scholar 

  • Edwards JM, Beare RJ, Lapworth AJ (2006) Simulation of the observed evening transition and nocturnal boundary layers: single-column modelling. Q J R Meteorol Soc 132:61–80

    Article  Google Scholar 

  • Emrick V, Hill A (1999) Classification of Great Basin plant communities occuring on Dugway Proving Ground. Elus Doc Paper 64, Utah

  • Erell E, Leal V, Maldonado E (2005) Measurement of air temperature in the presence of a large radiant flux: an assessment of passively ventilated thermometer screens. Boundary-Layer Meteorol 114:205–231

    Article  Google Scholar 

  • Fernando H, Pardyjak E, Di Sabatino S, Chow F, De Wekker S, Hoch S, Hacker J, Pace J, Pratt T, Pu Z, Steenburgh J, Whiteman C, Wang Y, Zajic D, Balsley B, Dimitrova R, Emmitt G, Higgins C, Hunt J, Knievel J, Lawrence D, Liu Y, Nadeau D, Kit E, Blomquist B, Conry P, Coppersmith R, Creegan E, Felton M, Grachev A, Gunawardena N, Hang C, Hocut C, Huynh G, Jeglum M, Jensen D, Kulandaivelu V, Lehner M, Leo L, Liberzon D, Massey J, McEnerney K, Pal S, Price T, Sghiatti M, Silver Z, Thompson M, Zhang H, Zsedrovits T (2015) THE MATERHORN—unraveling the intricacies of mountain weather. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-13-00131.1

  • Fitzjarrald DR, Lala GG (1989) Hudson valley fog environments. J Appl Meteorol 28:1303–1328

    Article  Google Scholar 

  • Google Earth (2013) Dugway Proving Ground, UT

  • Goulart AG, Bodmann BEJ, de Vilhena MTMB, Soares PMM, Moreira DM (2010) On the time evolution of the turbulent kinetic knergy spectrum for decaying turbulence in the convective boundary layer. Boundary-Layer Meteorol 138:61–75

    Article  Google Scholar 

  • Grant ALM (1997) An observational study of the evening transition boundary-layer. Q J R Meteorol Soc 123:657–677

    Article  Google Scholar 

  • Grimsdell AW, Angevine WM (2002) Observations of the afternoon transition of the convective boundary layer. J Appl Meteorol 41:3–11

    Article  Google Scholar 

  • Hang C, Nadeau DF, Jensen DD, Hoch SW, Pardyjak ER (2015) Playa soil moisture and evaporation dynamics during the MATERHORN field Program. BLM. doi:10.1007/s10546-015-0058-0

  • Jiménez Pa, Dudhia J, González-Rouco JF, Navarro J, Montávez JP, García-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140:898–918

    Article  Google Scholar 

  • Kang HS, Chester S, Meneveau C (2003) Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J Fluid Mech 480:129–160

    Article  Google Scholar 

  • Kumar V, Kleissl J, Meneveau C, Parlange MB (2006) Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: atmospheric stability and scaling issues. Water Resour Res 42:1–18

    Article  Google Scholar 

  • Kumar V, Svensson G, Holtslag A, Meneveau C, Parlange MB (2010) Impact of surface flux formulations and geostrophic forcing on large-eddy simulations of diurnal atmospheric boundary layer flow. J Appl Meteorol Climatol 49:1496–1516

    Article  Google Scholar 

  • Lothon M, Lenschow DH (2011) Studying the afternoon transition of the planetary boundary layer. Eos Trans Am Geophys Union 91:253–254

    Article  Google Scholar 

  • Lothon M, Lohou F, Pino D, Couvreux F, Pardyjak ER, Reuder J, Vilà-Guerau de Arellano J, Durand P, Hartogensis O, Legain D, Augustin P, Gioli B, Faloona I, Yagüe C, Alexander DC, Angevine WM, Bargain E, Barrié J, Bazile E, Bezombes Y, Blay-Carreras E, van de Boer A, Boichard JL, Bourdon A, Butet A, Campistron B, de Coster O, Cuxart J, Dabas A, Darbieu C, Deboudt K, Delbarre H, Derrien S, Flament P, Fourmentin M, Garai A, Gibert F, Graf A, Groebner J, Guichard F, Jimenez Cortes MA, Jonassen M, van den Kroonenberg A, Lenschow DH, Magliulo V, Martin S, Martinez D, Mastrorillo L, Moene AF, Molinos F, Moulin E, Pietersen HP, Piguet B, Pique E, Román-Cascón C, Rufin-Soler C, Saïd F, Sastre-Marugán M, Seity Y, Steeneveld GJ, Toscano P, Traullé O, Tzanos D, Wacker S, Wildmann N, Zaldei A (2014) The BLLAST field experiment: boundary-layer late afternoon and sunset turbulence. Atmos Chem Phys 14:10,931–10,960

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90:375–396

    Article  Google Scholar 

  • Malek E (1997) Evaluation of effective atmospheric emissivity and parameterization of cloud at local scale. Atmos Res 45(1):41–54. doi:10.1016/S0169-8095(97)00020-3

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci 24:163–187

    Google Scholar 

  • Nadeau DF, Pardyjak ER, Higgins CW, Fernando HJS, Parlange MB (2011) A simple model for the afternoon and early evening decay of convective turbulence over different land surfaces. Boundary-Layer Meteorol 141:301–324

    Article  Google Scholar 

  • Nieuwstadt FTM, Brost RA (1986) The decay of convective turbulence. J Atmos Sci 43:532–546

    Article  Google Scholar 

  • Pino D, Jonker HJJ, Arellano JVGD, Dosio A (2006) Role of shear and the inversion strength during sunset turbulence over land: characteristic length scales. Boundary-Layer Meteorol 121:537–556

    Article  Google Scholar 

  • Rizza U, Miglietta M, Degrazia G, Acevedo O, Marques Filho E (2013) Sunset decay of the convective turbulence with large-eddy simulation under realistic conditions. Physica A 392:4481–4490

    Article  Google Scholar 

  • Sorbjan Z (1997) Decay of convective turbulence revisited. Boundary-Layer Meteorol 82:503–517

    Article  Google Scholar 

  • Stull R (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

  • Taylor AC, Beare RJ, Thomson DJ (2014) Simulating dispersion in the evening-transition boundary layer. Boundary-Layer Meteorol 153:389–407

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150

    Article  Google Scholar 

  • Wyngaard JC, Coté OR, Izumi Y, Arya SPS (1972) Local free convection, similarity, and the budgets of shear stress and heat flux. J Atmos Sci 29:1230–1231

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Office of Naval Research Award \(\#N00014{-}11{-}1{-}0709\), Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. The authors would like to thank Michael Carston, Paul Broderick, Dr. Dragan Zajic and John Pace from the Dugway Proving Ground whose contributions were critical to the success of the field measurements. We are also extremely grateful for all of the help in the field and scientific insight provided by the MATERHORN team, especially Prof. H.J.S. Fernando. Finally, we would like to thank the reviewers whose comments and suggestions were invaluable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric R. Pardyjak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, D.D., Nadeau, D.F., Hoch, S.W. et al. Observations of Near-Surface Heat-Flux and Temperature Profiles Through the Early Evening Transition over Contrasting Surfaces. Boundary-Layer Meteorol 159, 567–587 (2016). https://doi.org/10.1007/s10546-015-0067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0067-z

Keywords

Navigation