Boundary-Layer Meteorology

, Volume 157, Issue 3, pp 375–399 | Cite as

Atmospheric Boundary-Layer Evening Transitions: A Comparison Between Two Different Experimental Sites

  • Mariano Sastre
  • Carlos Yagüe
  • Carlos Román-Cascón
  • Gregorio Maqueda


The planetary boundary-layer (PBL) afternoon and evening transition is investigated with measurements from two-month datasets, gathered at two experimental sites significantly different regarding heterogeneity, the degree of terrain wetness, and proximity to mountains. The period of 4 h prior to and after astronomical sunset is extensively analyzed. We show the mean evolution, average, maximum and minimum values of PBL variables, including wind speed, turbulent kinetic energy and potential temperature vertical gradient. Characteristic events, such as the wind minimum around sunset and a common pattern in the evolution of other variables, are identified. Results suggest that, for the establishment of the nocturnal stable boundary layer, moisture plays a more decisive role than turbulence. We also look into the occurrence of katabatic flows, finding more intense but less frequent events at the driest site. In contrast, at that location the crossover of the sensible heat flux takes place later. Time-scale evolution is investigated through case studies, and air humidity and soil moisture are found to have crucial importance explaining most of the site-to-site differences. Therefore, a humidity sensitivity experiment with the Weather Research and Forecasting model is performed, evaluating the role of moisture during the transition by increasing the soil humidity at the driest site and reducing it at the other location. The simulations reveal that humidity effects are more important until 1 h before sunset, both near the surface and at upper levels in the PBL. Furthermore, the moisture change is more relevant at the less humid and more homogeneous site, with intense and long-lasting effects after sunset.


Afternoon–evening transition Field measurements Katabatic flow Mesoscale numerical simulations Multi-resolution flux decomposition 



This research has been funded by the Spanish Government (MINECO projects CGL2006-12474-C03-03, CGL2009-12797-C03-03, CGL2011-13477-E and CGL2012-37416-C04-02). The GR3/14 program (supported by UCM and Banco Santander) has also partially financed this work through the Research Group “Micrometeorology and Climate Variability” (No. 910437). Additionally, M. Sastre was supported by a FPI-UCM fellowship (reference BE45/10). BLLAST field experiment was made possible thanks to the contribution of several institutions and supports: INSU-CNRS (Institut National des Sciences de l’Univers, Centre national de la Recherche Scientifique, LEFE-IDAO program), Météo-France, Observatoire Midi-Pyrénées (University of Toulouse), EUFAR (EUropean Facility for Airborne Research) and COST ES0802 (European Cooperation in the field of Scientific and Technical). The field experiment would not have occurred without the contribution of all participating European and American research groups, which all have contributed in a significant amount. BLLAST field experiment was hosted by the instrumented site of Centre de Recherches Atmosphériques, Lannemezan, France (Observatoire Midi-Pyrénées, Laboratoire d’Aérologie). BLLAST data are managed by SEDOO, from Observatoire Midi-Pyrénées. The tower equipment is supported by CNRS, University of Toulouse and European POCTEFA FluxPyr program and FEDER program (Contract 34172 – IRENEA – ESPOIR). Prof. J.L. Casanova and Dr. J. Peláez (CIBA); Dr. F. Saïd, C. Darbieu and Dr. M. Lothon (Laboratoire d’Aérologie, Toulouse); P. Bornuat (Météo-France, Tarbes); and G. Morales (AEMET) are acknowledged for their technical support and help dealing with some data as well as for the climatological information. Finally, we thank I. Gómara (Univ. Complutense, Madrid), Dr. F. Lohou (Univ. Paul Sabatier, Toulouse), and two anonymous referees, whose valuable suggestions and comments contributed to improving the manuscript.


  1. Acevedo OC, Fitzjarrald DR (2001) The early evening surface-layer transition: temporal and spatial variability. J Atmos Sci 58:2650–2667CrossRefGoogle Scholar
  2. Angevine WM (2008) Transitional, entraining, cloudy, and coastal boundary layers. Acta Geophys 56:2–20CrossRefGoogle Scholar
  3. Angevine WM, Baltink HK, Bosveld FC (2001) Observations of the morning transition of the convective boundary layer. Boundary-Layer Meteorol 101:209–227CrossRefGoogle Scholar
  4. Angevine WM, Bazile E, Legain D, Pino D (2014) Land surface spinup for episodic modeling. Atmos Chem Phys 14:8165–8172. doi: 10.5194/acp-14-8165-2014 CrossRefGoogle Scholar
  5. Baklanov A, Grisogono B, Bornstein R, Mahrt L, Zilitinkevich S, Taylor P, Larsen S, Rotach M, Fernando HJS (2010) On the nature, theory, and modelling of atmospheric planetary boundary layers. Bull Am Meteorol Soc 92:123–128CrossRefGoogle Scholar
  6. Beljaars ACM (1994) The parameterization of surface fluxes in large-scale models under free convection. Q J R Meteorol Soc 121:255–270Google Scholar
  7. Beyrich F, Mengelkamp HT (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment—an overview. Boundary-Layer Meteorol 121:5–32CrossRefGoogle Scholar
  8. Blay-Carreras E, Pardyjak ER, Pino D, Alexander DC, Lohou F, Lothon M (2014) Countergradient heat flux observations during the evening transition period. Atmos Chem Phys 14:9077–9085. doi: 10.5194/acp-14-9077-2014 CrossRefGoogle Scholar
  9. Blay-Carreras E, Pino D, Vilà-Guerau de Arellano J, van de Boer A, de Coster O, Darbieu C, Hartogensis O, Lohou F, Lothon M, Pietersen H (2014) Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer. Atmos Chem Phys 14:4515–4530. doi: 10.5194/acp-14-4515-2014 CrossRefGoogle Scholar
  10. Bonin T, Chilson P, Zielke B, Fedorovich E (2013) Observations of the early evening boundary-layer transition using a small unmanned aerial system. Boundary-Layer Meteorol 146:119–132CrossRefGoogle Scholar
  11. Brazel AJ, Fernando HJS, Hunt JCR, Selover N, Hedquist BC, Pardyjak E (2005) Evening transition observations in Phoenix, Arizona. J Appl Meteorol 44:99–112CrossRefGoogle Scholar
  12. Cuxart J (2008) Nocturnal basin low-level jets: an integrated study. Acta Geophys 56:100–113CrossRefGoogle Scholar
  13. Cuxart J, Yagüe C, Morales G, Terradellas E, Orbe J, Calvo J, Fernández A, Soler MR, Infante C, Buenestado P, Espinalt A, Joergensen HE, Rees JM, Vilà J, Redondo JM, Cantalapiedra IR, Conangla L (2000) Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES 98): a report. Boundary-Layer Meteorol 96:337–370CrossRefGoogle Scholar
  14. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  15. Edwards JM, Basu S, Bosveld FC, Holtslag AAM (2014) The impact of radiation on the GABLS3 large-eddy simulation through the night and during the morning transition. Boundary-Layer Meteorol 152:189–211. doi: 10.1007/s10546-013-9895-x CrossRefGoogle Scholar
  16. Fernando HJS, Princevac M, Pardyjak E, Data A (2004) The decay of convective turbulence during evening transition period. In: 11th conference on mountain meteorology and MAP meeting, 21–25 June 2004, Bartlett (NH), USA, paper 10.3Google Scholar
  17. Fernando HJS, Verhoef B, Di Sabatino S, Leo LS, Park S (2013) The Phoenix evening transition flow experiment (TRANSFLEX). Boundary-Layer Meteorol 147:443–468CrossRefGoogle Scholar
  18. Fitzjarrald DR, Lala GG (1989) Hudson valley fog environments. J Appl Meteorol 28:1303–1328CrossRefGoogle Scholar
  19. Grant AM (1997) An observational study of the evening transition boundary-layer. Q J R Meteorol Soc 123:657–677CrossRefGoogle Scholar
  20. Grimsdell AW, Angevine WM (2002) Observations of the afternoon transition of the convective boundary layer. J Appl Meteorol 41:3–11CrossRefGoogle Scholar
  21. Haar A (1910) Zur Theorie der orthogonalen Funktionensysteme. Math Ann 69:331–371CrossRefGoogle Scholar
  22. Holtslag AAM, Svensson G, Baas P, Basu S, Beare B, Beljaars ACM, Bosveld FC, Cuxart J, Lindvall J, Steeneveld GJ, Tjernström M (2013) Stable atmospheric boundary layers and diurnal cycles—challenges for weather and climate models. Bull Am Meteorol Soc 94:1691–1706CrossRefGoogle Scholar
  23. Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120CrossRefGoogle Scholar
  24. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341CrossRefGoogle Scholar
  25. Howell JF, Mahrt L (1997) Multiresolution flux decomposition. Boundary-Layer Meteorol 83:117–137CrossRefGoogle Scholar
  26. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  27. Lapworth AJ (2003) Factors determining the decrease in surface wind speed following evening transition. Q J R Meteorol Soc 129:1945–1968Google Scholar
  28. Lapworth AJ (2006) The morning transition of the nocturnal boundary layer. Boundary-Layer Meteorol 119:501–526CrossRefGoogle Scholar
  29. Lapworth AJ (2015) Observations of the site dependency of the morning wind and the role of gravity waves in the transitions. Q J R Meteorol Soc 141:27–36CrossRefGoogle Scholar
  30. Lapworth AJ, Claxton BM (2010) The effect of terrain on the evening wind. Q J R Meteorol Soc 136:1763–1772CrossRefGoogle Scholar
  31. Lothon M, Lohou F, Pino D, Couvreux F, Pardyjak ER, Reuder J, Vilà-Guerau de Arellano J, Durand P, Hartogensis O, Legain D, Augustin P, Gioli B, Lenschow DH, Faloona I, Yagüe C, Alexander DC, Angevine WM, Bargain E, Barrié J, Bazile E, Bezombes Y, Blay-Carreras E, van de Boer A, Boichard JL, Bourdon A, Butet A, Campistron B, de Coster O, Cuxart J, Dabas A, Darbieu C, Deboudt K, Delbarre H, Derrien S, Flament P, Fourmentin M, Garai A, Gibert F, Graf A, Groebner J, Guichard F, Jiménez MA, Jonassen M, van den Kroonenberg A, Magliulo V, Martin S, Martínez D, Mastrorillo L, Moene AF, Molinos F, Moulin E, Pietersen HP, Piguet B, Pique E, Román-Cascón C, Rufin-Soler C, Saïd F, Sastre-Marugán M, Seity Y, Steeneveld GJ, Toscano P, Traullé O, Tzanos D, Wacker S, Wildmann N, Zaldei A (2014) The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos Chem Phys 14:10931–10960. doi: 10.5194/acp-14-10931-2014 CrossRefGoogle Scholar
  32. Mahrt L (1981) The early evening boundary layer transition. Q J R Meteorol Soc 107:329–343CrossRefGoogle Scholar
  33. Mahrt L (2014) Stably stratified atmospheric boundary layers. Annu Rev Fluid Mech 46:23–45CrossRefGoogle Scholar
  34. Martínez D, Jiménez MA, Cuxart J, Mahrt L (2010) Heterogeneous nocturnal cooling in a large basin under very stable conditions. Boundary-Layer Meteorol 137:97–113CrossRefGoogle Scholar
  35. Mira M, Valor E, Boluda R, Caselles V, Coll C (2007) Influence of soil water content on the thermal infrared emissivity of bare soils: implication for land surface temperature determination. J Geophys Res 112:F04003. doi: 10.1029/2007JF000749 Google Scholar
  36. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682CrossRefGoogle Scholar
  37. Nadeau DF, Pardyjak ER, Higgins CW, Fernando HJS, Parlange MB (2011) A simple model for the afternoon and early evening decay of convective turbulence over different land surfaces. Boundary-Layer Meteorol 141:301–324CrossRefGoogle Scholar
  38. Nieuwstadt FTM, Brost RA (1986) The decay of convective turbulence. J Atmos Sci 43:532–546CrossRefGoogle Scholar
  39. Pardyjak ER, Fernando HJS, Hunt JCR, Grachev AA, Anderson J (2009) A case study of the development of nocturnal slope flows in a wide open valley and associated air quality implications. Meteorol Zeit 18:85–100CrossRefGoogle Scholar
  40. Román-Cascón C, Yagüe C, Sastre M, Maqueda G, Salamanca F, Viana S (2012) Observations and WRF simulations of fog events at the Spanish Northern Plateau. Adv Sci Res 8:11–18CrossRefGoogle Scholar
  41. Román-Cascón C, Yagüe C, Viana S, Sastre M, Maqueda G, Lothon M, Gómara I (2015) Near-monochromatic ducted gravity waves associated with a convective system close to the Pyrenees. Q J R Meteorol Soc 141:1320–1332. doi: 10.1002/qj.2441 CrossRefGoogle Scholar
  42. Sastre M, Yagüe C, Román-Cascón C, Maqueda G, Salamanca F, Viana S (2012) Evening transitions of the atmospheric boundary layer: characterization, case studies and WRF simulations. Adv Sci Res 8:39–44CrossRefGoogle Scholar
  43. Skamarock WC, Klemp JB (2008) A time-split non-hydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485CrossRefGoogle Scholar
  44. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note, NCAR/TN-475+STR, 113 ppGoogle Scholar
  45. Soler MR, Udina M, Ferreres E (2014) Observational and numerical simulation study of a sequence of eight atmospheric density currents in northern Spain. Boundary-Layer Meteorol 153:195–216. doi: 10.1007/s10546-014-9942-2 CrossRefGoogle Scholar
  46. Sorbjan Z (1997) Decay of convective turbulence revisited. Boundary-Layer Meteorol 82:501–515CrossRefGoogle Scholar
  47. Sorbjan Z (2007) A numerical study of daily transitions in the convective boundary layer. Boundary-Layer Meteorol 123:365–383CrossRefGoogle Scholar
  48. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 ppGoogle Scholar
  49. Teixeira J, Stevens B, Bretherton CS, Cederwall R, Klein SA, Lundquist JK, Doyle JD, Golaz JC, Holtslag AAM, Randall DA, Siebesma AP, Soares PMM (2008) Parameterization of the atmospheric boundary layer: a view from just above the inversion. Bull Am Meteorol Soc 89:453–458CrossRefGoogle Scholar
  50. Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca RH (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. In: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, 11–15 January 2004, Seattle (WA), USA, paper 14:2aGoogle Scholar
  51. Udina M, Soler MR, Viana S, Yagüe C (2013) Model simulation of gravity waves triggered by a density current. Q J R Meteorol Soc 139:701–714CrossRefGoogle Scholar
  52. Viana S, Yagüe C, Maqueda G (2009) Propagation and effects of a mesoscale gravity-wave over a weakly-stratified stable boundary layer during SABLES2006 field campaign. Boundary-Layer Meteorol 133:165–188CrossRefGoogle Scholar
  53. Viana S, Terradellas E, Yagüe C (2010) Analysis of gravity waves generated at the top of a drainage flow. J Atmos Sci 67:3949–3966CrossRefGoogle Scholar
  54. Viana S, Yagüe C, Maqueda G (2012) Vertical structure of the stable boundary layer detected by RASS-SODAR and in-situ measurements in SABLES 2006 field campaign. Acta Geophys 60:1261–1286CrossRefGoogle Scholar
  55. Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Technol 20:660–672CrossRefGoogle Scholar
  56. Yagüe C, Viana S, Maqueda G, Lazcano MF, Morales G, Rees JM (2007) A study on the nocturnal atmospheric boundary layer: SABLES2006. Física de la Tierra 19:37–53Google Scholar
  57. Yagüe C, Sastre M, Maqueda G, Viana S, Ramos D, Vindel JM, Morales G (2009) CIBA2008, an experimental campaign on the atmospheric boundary layer: preliminary nocturnal results. Física de la Tierra 21:13–26Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mariano Sastre
    • 1
  • Carlos Yagüe
    • 1
  • Carlos Román-Cascón
    • 1
  • Gregorio Maqueda
    • 2
  1. 1.Dep. Geofísica y MeteorologíaUniversidad Complutense de MadridMadridSpain
  2. 2.Dep. Astrofísica y Ciencias de la AtmósferaUniversidad Complutense de MadridMadridSpain

Personalised recommendations