Skip to main content
Log in

The Effects of Highly Detailed Urban Roughness Parameters on a Sea-Breeze Numerical Simulation

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We consider the effects of detailed urban roughness parameters on a sea-breeze simulation. An urban roughness database, constructed using a new aerodynamic parametrization derived from large-eddy simulations, was incorporated as a surface boundary condition in the advanced Weather Research and Forecasting model. The zero-plane displacement and aerodynamic roughness length at several densely built-up urban grids were three times larger than conventional values due to the consideration of building-height variability. A comparison between simulations from the modified model and its default version, which uses uniform roughness parameters within a conventional method, was conducted for a 2-month period during summer. Results showed a significant improvement in the simulation of surface wind speed but not with temperature. From the 2-month study period, a day with an evident sea-breeze penetration was selected and simulated at higher temporal resolution. Sea-breeze penetration weakened and was more delayed over urbanized areas. The slow sea-breeze penetration also lessened heat advection downwind allowing stronger turbulent mixing and a deeper boundary layer above urban areas. Horizontal wind-speed reduction due to the increased urban surface drag reached heights of several hundreds of metres due to the strong convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Burian SJ, Ching JK (2009) Development of gridded fields of urban canopy parameters for advanced urban meteorological and air quality models. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-10/007, 89 pp

  • Burian SJ, Brown MJ, Linger SP (2002) Morphological analysis using 3D building databases. Los Alamos National Laboratory, Los Angeles, California, LA-UR-02-0781, 66 pp

  • Chen F, Miao S, Tewari M, Bao JW, Kusaka H (2011a) A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. J Geophys Res Atmos (1984–2012) 116:27. doi:10.1029/2010JD015533

  • Chen F, Kusaka H, Bornstein R, Ching J, Grimmond CSB, Grossman-Clarke S, Loridan T, Manning KW, Martilli A, Miao S, Sailor D, Salamanca FP, Taha H, Tewari M, Wang X, Wyszogrodzki AA, Zhang C (2011b) The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int J Climatol 31:273–288. doi:10.1002/joc.2158

    Article  Google Scholar 

  • Childs PP, Raman S (2005) Observations and numerical simulations of urban heat island and sea breeze circulations over New York City. Pure Appl Geophys 162:1955–1980. doi:10.1007/s00024-005-2700-0

    Article  Google Scholar 

  • Chou M-D, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Technical Memorandum 104606, Technical Report Series on Global Modeling and Data Assimilation, vol 3. National Aeronautics and Space Administration, Greenbelt, MD, USA, 85 pp

  • Chuan-Yao L, Chen F, Huang JC, Chen WC, Liuo YA, Chen WN, Liu SC (2008) Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmos Environ 42:5635–5649. doi:10.1016/j.atmosenv.2008.03.015

    Article  Google Scholar 

  • Corpetti T, Planchon O (2011) Front detection on satellite images based on wavelet and evidence theory: application to the sea breeze fronts. Remote Sens Environ 115:306–324. doi:10.1016/j.rse.2010.09.003

    Article  Google Scholar 

  • Damato F, Planchon O, Dubreuil V (2003) A remote-sensing study of the inland penetration of sea-breeze fronts from the English channel. Weather 58(6):219–226. doi:10.1256/wea.50.02

    Article  Google Scholar 

  • Dandou A, Tombrou M, Soulakellis N (2009) The influence of the city of Athens on the evolution of the sea-breeze front. Boundary-Layer Meteorol 131(1):35–51. doi:10.1007/s10546-008-9306-x

    Article  Google Scholar 

  • Flagg DD, Taylor PA (2011) Sensitivity of mesoscale model urban boundary layer meteorology to the scale of urban representation. Atmos Chem Phys 11:2951–2972. doi:10.5194/acp-11-2951-2011

    Article  Google Scholar 

  • Fujibe F (2011) Urban Warming in Japanese cities and its relation to climate change monitoring. Int J Climatol 31:162–173. doi:10.1002/joc.2142

    Article  Google Scholar 

  • Grimmond S, Oke T (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292. doi:10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2

    Article  Google Scholar 

  • Holt T, Pullen J (2007) Urban canopy modeling of the New York city metropolitan area: a comparison and validation of single- and multilayer parameterizations. Mon Weather Rev 135:1906–1930. doi:10.1175/MWR3372.1

  • Inoue T, Kimura F (2004) Urban effects on low-level clouds around the Tokyo metropolitan area on clear summer days. Geophys Res Lett 31:L05103. doi:10.1029/2003GL018908

    Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

    Article  Google Scholar 

  • Kanda M, Inoue Y, Uno I (2001) Numerical study on cloud lines over an urban street in Tokyo. Boundary-Layer Meteorol 98:251–273. doi:10.1023/A:1026504904902

    Article  Google Scholar 

  • Kanda M, Kawai T, Nakagawa K (2005a) A simple theoretical radiation scheme for regular building arrays. Boundary-Layer Meteorol 114:71–90. doi:10.1007/s10546-004-8662-4

    Article  Google Scholar 

  • Kanda M, Kawai T, Kanega M, Moriwaki R, Narita K, Hagishima A (2005b) A simple energy balance model for regular building arrays. Boundary-Layer Meteorol 116:423–443. doi:10.1007/s10546-004-7956-x

  • Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parametrization for real urban surfaces. Boundary-Layer Meteorol 148:357–377. doi:10.1007/s10546-013-9818-x

    Article  Google Scholar 

  • Kawai T, Ridwan MK, Kanda M (2009) Evaluation of the simple urban energy balance model using selected data from 1-yr flux observations at two cities. J Appl Meteorol Climatol 48:693–715. doi:10.1175/2008JAMC1891.1

    Article  Google Scholar 

  • Khiem M, Ooka R, Hayami H, Yoshikado H, Huang H, Kawamoto H (2010) Process analysis of ozone formation under different weather conditions over the Kanto region of Japan using the MM5/CMAQ modelling system. Atmos Environ 44:4463–4473. doi:10.1016/j.atmosenv.2010.07.038

    Article  Google Scholar 

  • Kim YH, Baik JJ (2005) Spatial and temporal structure of the urban heat island in Seoul. J Appl Meteorol 44:591–605. doi:10.1175/JAM2226.1

    Article  Google Scholar 

  • Kim Y, Sartelet K, Raut J-C, Chazette P (2013) Evaluation of the weather research and forecast/urban model over greater Paris. Boundary-Layer Meteorol 149:105–132. doi:10.1007/s10546-013-9838-6

    Article  Google Scholar 

  • Kimura F, Takashi S (1991) The effects of land-use and anthropogenic heating on the surface temperature in the Tokyo metropolitan area: a numerical experiment. Atmos Environ Part B 25:155–164 doi:10.1016/0957-1272(91)90050-O

  • Kondo H, Genchi Y, Kikegawa Y, Ohashi Y, Yoshikado H, Komiyama H (2005) Development of a multi-layer urban canopy model for the analysis of energy consumption in a Big City: structure of the urban canopy model and its basic performance. Boundary-Layer Meteorol 116:395–421. doi:10.1007/s10546-005-0905-5

    Article  Google Scholar 

  • Kondo H, Tokairin T, Kikegawa Y (2008) Calculation of wind in a Tokyo urban area with a mesoscale model including a multi-layer urban canopy model. J Wind Eng Ind Aerodyn 96:1655–1666. doi:10.1016/j.jweia.2008.02.022

    Article  Google Scholar 

  • Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Boundary-Layer Meteorol 101:329–358. doi:10.1023/A:1019207923078

    Article  Google Scholar 

  • Lee SH, Kim SW, Angevine WM, Bianco L, McKeen SA, Senff CJ, Trainer M, Tucker SC, Zamora RJ (2011) Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos Chem Phys 11:2127–2143. doi:10.5194/acp-11-2127-2011

  • Macdonald RW, Griffiths RF, Hall DJ (1998) An improved method for the estimation of surface roughness of obstacle arrays. Atmos Environ 32:1857–1864. doi:10.1016/S1352-2310(97)00403-2

    Article  Google Scholar 

  • Martilli A (2003) A two-dimensional numerical study of the impact of a city on atmospheric circulation and pollutant dispersion in a coastal environment. Boundary-Layer Meteorol 108:91–119. doi:10.1023/A:1023044100064

    Article  Google Scholar 

  • Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parameterisation for mesoscale models. Boundary-Layer Meteorol 104:261–304. doi:10.1023/A:1016099921195

    Article  Google Scholar 

  • Miao S, Chen F, LeMone MA, Tewari M, Li Q, Wang Y (2009) An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J Appl Meteorol 48:484–501. doi:10.1175/2008JAMC1909.1

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Lacono MJ, Clouch SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682. doi:10.1029/97JD00237

    Article  Google Scholar 

  • Moriwaki R, Kanda M, Senoo H, Hagishima A, Kinouchi T (2008) Anthropogenic water vapor emissions in Tokyo. Water Resour Res 44:W11424. doi:10.1029/2007WR006624

    Article  Google Scholar 

  • Nakanishi M, Niino H (2006) An improved Mellor–Yamada level 3 model: its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorol 119:397–407. doi:10.1007/s10546-005-9030-8

    Article  Google Scholar 

  • Nakayoshi M, Kanda M, Shi R, de Dear R (2014) Outdoor thermal physiology along human pathways: a study using a wearable measurement system. Int J Biometeorol. Advance Online Publication. doi:10.1007/s00484-014-0864-y

  • Prtenjak MT (2002) Idealised numerical simulations of aerodynamic roughness length effects on sea breeze characteristics. In: Proceedings second conference on air pollution modelling and simulation, APMS’01 Champs-sur-Marne, April 9–12, 2001. Air Pollution Modelling and Simulation, pp 553–556. doi:10.1007/978-3-662-04956-3_53

  • Salamanca F, Martilli A, Tewari M, Chen F (2011) A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J Appl Meteorol Climatol 50:1107–1128. doi:10.1175/2010JAMC2538.1

    Article  Google Scholar 

  • Skamarock WC, Klemp JN, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF Version 2. NCAR Tech Notes-468+STR. doi:10.5065/D6DZ069T

  • Sugawara H, Narita K, Mikami T (2004) Representative air temperature of thermally heterogeneous urban areas using the measured pressure gradient. J Appl Meteorol 43:1168–1179. doi:10.1175/1520-0450(2004)043<1168:RATOTH>2.0.CO;2

    Article  Google Scholar 

  • Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon Weather Rev 136:5095–5115. doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2

    Article  Google Scholar 

  • Tso CP (1996) A survey of urban heat island studies in two tropical cities. Atmos Environ 30:507–519. doi:10.1016/1352-2310(95)00083-6

    Article  Google Scholar 

  • Williams CN, Basis A, Peterson TC (2000) Calibration and verification of land surface temperature anomalies derived from the SSM/I. Bull Am Meteorol Soc 81:2141–2156. doi:10.1175/1520-0477(2000)081<2141:CAVOLS>2.3.CO;2

  • Yoshikado H, Kondo H (1989) Inland penetration of the sea breeze over the suburban area of Tokyo. Boundary-Layer Meteorol 48:389–407. doi:10.1007/BF00123061

    Article  Google Scholar 

  • Zhang D, Anthes RA (1982) A high-resolution model of the planetary boundary layer-sensitivity tests and comparison with SESAME-79 data. J Appl Meteorol 21:1594–1609. doi:10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2

Download references

Acknowledgments

This research was supported by the Research Program on Climate Change Adaptation (RECCA) Fund from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and the Grant-in-Aid for Scientific Research (A): 25249066

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin Christopher G. Varquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varquez, A.C.G., Nakayoshi, M. & Kanda, M. The Effects of Highly Detailed Urban Roughness Parameters on a Sea-Breeze Numerical Simulation. Boundary-Layer Meteorol 154, 449–469 (2015). https://doi.org/10.1007/s10546-014-9985-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-014-9985-4

Keywords

Navigation