Boundary-Layer Meteorology

, Volume 154, Issue 3, pp 471–495 | Cite as

Turbulence Characteristics in the Atmospheric Surface Layer for Different Wind Regimes over the Tropical Zongo Glacier (Bolivia, \(16^\circ \)S)

  • Maxime LittEmail author
  • Jean-Emmanuel Sicart
  • Warren D. Helgason
  • Patrick Wagnon


We investigate properties of the turbulent flow and sensible heat fluxes in the atmospheric surface layer of the high elevation tropical Zongo glacier (\(5,080\) m a.s.l., \(16^\circ \)S, Bolivia) from data collected in the dry season from July to August 2007, with an eddy-covariance system and a 6-m mast for wind speed and temperature profiles. Focus is on the predominant downslope wind regime. A low-level wind-speed maximum, around a height of \(2\) m, is detected in low wind conditions (37 % of the time). In strong wind conditions (39 % of the time), no wind-speed maximum is detected. Statistical and spectral analyses reveal low frequency oscillations of the horizontal wind speed that increase vertical mixing. In strong winds, wavelet analysis shows that coherent structures systematically enhance the turbulent sensible heat fluxes, accounting for 44–52 % of the flux. In contrast, in low wind conditions, the katabatic flow is perturbed by its slow oscillations or meandering motions, inducing erratic turbulent sensible heat fluxes. These motions account for 37–43 % of the flux. On tropical glaciers, the commonly used bulk aerodynamic profile method underestimates the eddy-covariance-based flux, probably because it does not account for low frequency disturbances that influence the surface flow in both wind regimes.


Coherent structures Eddy covariance Energy balance Katabatic wind Tropical glaciers 



The glaciological program is supported by the Institut de Recherche pour le Développement (IRD). The authors are grateful for the assistance provided by IHH (Instituto de Hidraulica e Hídrologia), UMSA (Universidad Mayor de San Andrés) in La Paz, Bolivia. This work was funded by the French SO/SOERE GLACIOCLIM (, the ANR program TAG 05-JCJC-0135 and the LMI program GREATICE. It has been supported by a grant from Labex OSUG@2020 (Investissements d’avenir ANR10 LABX56). We gratefully thank Sebastien Blein for stimulating discussions and Yves Lejeune, Jean Philippe Chazarin and Benjamin Lehmann for the technical and field work.


  1. Andreas EL (1987) Spectral measurements in a disturbed boundary layer over snow. J Atmos Sci 44(15):1912–1939CrossRefGoogle Scholar
  2. Barthlott C, Drobinski P, Fesquet C, Dubos T, Pietras C (2007) Long-term study of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 125(1):1–24CrossRefGoogle Scholar
  3. Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756CrossRefGoogle Scholar
  4. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189CrossRefGoogle Scholar
  5. Collineau S, Brunet Y (1993) Detection of turbulent coherent motions in a forest canopy, Part 1: wavelet analysis. Bound-Layer Meteorol 65(4):357–379Google Scholar
  6. Cullen NJ, Mölg T, Kaser G, Steffen K, Hardy DR (2007) Energy-balance model validation on the top of Kilimanjaro, Tanzania, using eddy covariance data. Ann Glaciol 46(1):227–233CrossRefGoogle Scholar
  7. Denby B, Greuell W (2000) The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds. J Glaciol 46(154):445–452CrossRefGoogle Scholar
  8. Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7(3):363–372CrossRefGoogle Scholar
  9. Favier V, Wagnon P, Ribstein P (2004) Glaciers of the outer and inner tropics: a different behaviour but a common response to climatic forcing. Geophys Res Lett 31:L16403CrossRefGoogle Scholar
  10. Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194(1):5–22CrossRefGoogle Scholar
  11. Helgason W, Pomeroy JW (2012) Characteristics of the near-surface boundary layer within a mountain valley during winter. J Appl Meteor Climatol 51:583–597CrossRefGoogle Scholar
  12. Högström U, Hunt JCR, Smedman AS (2002) Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol 103(1):101–124CrossRefGoogle Scholar
  13. Højstrup J (1982) Velocity spectra in the unstable planetary boundary layer. J Atmos Sci 39:2239–2248CrossRefGoogle Scholar
  14. Jomelli V, Khodri M, Favier V, Brunstein D, Ledru MP, Wagnon P, Blard PH, Sicart JE, Braucher R, Grancher D, Bourlès DL, Braconnot P, Vuille M (2011) Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming. Nature 474(7350):196–199CrossRefGoogle Scholar
  15. Kaimal JC, Finnigan J (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York 289 ppGoogle Scholar
  16. Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98(417):563–589CrossRefGoogle Scholar
  17. Mahrt L, Paumier J (1984) Heat transport in the atmospheric boundary layer. J Atmos Sci 41(21):3061–3075CrossRefGoogle Scholar
  18. Mahrt L (2007) Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ Fluid Mech 7(4):331–347CrossRefGoogle Scholar
  19. McNider R (1982) A note on velocity fluctuations in drainage flows. J Atmos Sci 39(7):1658–1660CrossRefGoogle Scholar
  20. Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr Akad Nauk SSSR Geophiz Inst 24(151):163–187Google Scholar
  21. Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41(14):2202–2216CrossRefGoogle Scholar
  22. Munro DS (1989) Surface roughness and bulk heat transfer on a glacier: comparison with Eddy correlation. J Glacio 35(121):343–348Google Scholar
  23. Oerlemans J, Grisogono B (2002) Glacier winds and parameterisation of the related surface heat fluxes. Tellus 54A:440452Google Scholar
  24. Panofsky HA, Dutton JA (1984) Atmospheric turbulence: models and methods for engineering applications. Wiley, New York, 397 ppGoogle Scholar
  25. Poulos GS, Bossert JE, McKee TB, Pielke R (2007) The interaction of katabatic flow and mountain waves. Part II: case study analysis and conceptual model. J Atmos Sci 64(6):1857–1879CrossRefGoogle Scholar
  26. Poulos GS, Zhong S (2008) An observational history of small-scale katabatic winds in mid-latitudes. Geogr Compass 2:1–24CrossRefGoogle Scholar
  27. Prandtl L (1942) Führer durch die Strömungslehre. Vieweg und Sohn, Braunschwieg, 382 ppGoogle Scholar
  28. Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Basantes R, Vuille M, Sicart JE, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Ménégoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7(1):81–102CrossRefGoogle Scholar
  29. Rabatel A, Jomelli V, Naveau P, Francou B, Grancher D (2005) Dating of little ice age glacier fluctuations in the tropical andes: charquini glaciers, Bolivia, 16\(^\circ \)S. C R Geosci 337(15):1311–1322CrossRefGoogle Scholar
  30. Raupach MR, Finnigan JJ, Brunei Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78(3–4):351–382CrossRefGoogle Scholar
  31. Reba ML, Link TE, Marks D, Pomeroy J (2009) An assessment of corrections for eddy covariance measured turbulent fluxes over snow in mountain environments. Water Resour Res 45:W00D38CrossRefGoogle Scholar
  32. Schotanus P, Nieuwstadt FTM, De Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound-Layer Meteorol 26(1):81–93CrossRefGoogle Scholar
  33. Sicart JE, Patrick W, Ribstein P (2005) Atmospheric controls of the heat balance of Zongo Glacier (16\(^\circ \)S, Bolivia). J Geophys Res 110:D12106CrossRefGoogle Scholar
  34. Sicart JE, Hock R, Ribstein P, Litt M, Ramirez E (2011) Analysis of seasonal variations in mass balance and meltwater discharge of the tropical Zongo Glacier by application of a distributed energy balance model. J Geophy Res 116:D13105CrossRefGoogle Scholar
  35. Sicart JE, Litt M, Helgason W, Ben Tahar V, Chaperon T (2014) A study of the atmospheric surface layer and roughness lengths of the high-altitude tropical Zongo Glacier, Bolivia. J Geophys Res 119(7):3793–3808Google Scholar
  36. Smeets CJPP, Duynkerke P, Vugts H (1998) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part I: a combination of katabatic and large-scale forcing. Boundary-Layer Meteorol 87(1):117–145CrossRefGoogle Scholar
  37. Smeets CJPP, Duynkerke P, Vugts H (2000) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part II: pure katabatic forcing conditions. Boundary-Layer Meteorol 97(1):73–107CrossRefGoogle Scholar
  38. Sorbjan Z (1986) On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol 34(4):377–397CrossRefGoogle Scholar
  39. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 ppGoogle Scholar
  40. Thomas C, Foken T (2005) Detection of long-term coherent exchange over spruce forest using wavelet analysis. Theor Appl Climatol 80(2–4):91–104CrossRefGoogle Scholar
  41. Thompson LG, Mosley-Thompson E, Davis ME, Lin PN, Henderson K, Mashiotta TA (2003) Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Clim Change 59:137–155CrossRefGoogle Scholar
  42. Van den Broeke M (1997) Momentum, heat, and moisture budgets of the katabatic wind layer over a midlatitude glacier in summer. J Appl Meteorol 36(6):763–774CrossRefGoogle Scholar
  43. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Tech 14(3):512–526CrossRefGoogle Scholar
  44. Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Tech 20(5):660–672Google Scholar
  45. Wagnon P, Ribstein P, Francou B, Pouyaud B (1999) Annual cycle of energy balance of Zongo Glacier, Cordillera Real, Bolivia. J Geophys Res 104:3907–3923CrossRefGoogle Scholar
  46. Wagnon P, Sicart JE, Berthier E, Chazarin J (2003) Wintertime high-altitude surface energy balance of a Bolivian glacier, Illimani, 6340 m above sea level. J Geophys Res 108(D6):4177CrossRefGoogle Scholar
  47. Whiteman CD (1990) Observations of thermally developed wind systems in mountainous terrain. In: Blumen W (ed) Atmospheric processes over complex terrain, meteorological monograph, 23(45). American Meteorological Society, BostonGoogle Scholar
  48. Whiteman CD (2000) Mountain meteorology, fundamentals and application. Oxford University Press, New York 355 ppGoogle Scholar
  49. Wilczak J, Oncley S, Stage S (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150CrossRefGoogle Scholar
  50. Winkler M, Juen I, Mölg T, Wagnon P, Gómez J, Kaser G (2009) Measured and modelled sublimation on the tropical Glaciar Artesonraju. Perú T C 3(1):21–30Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Maxime Litt
    • 1
    Email author
  • Jean-Emmanuel Sicart
    • 1
    • 2
    • 3
    • 4
  • Warren D. Helgason
    • 5
  • Patrick Wagnon
    • 1
    • 2
    • 3
    • 6
  1. 1.Université de Grenoble Alpes, LTHEGrenobleFrance
  2. 2.CNRS, LTHEGrenobleFrance
  3. 3.IRD, LTHEGrenobleFrance
  4. 4.IHH, UMSALa PazBolivia
  5. 5.Civil and Geological EngineeringUniversity of SaskatchewanSaskatoonCanada
  6. 6.ICIMOD, GPOKathmanduNepal

Personalised recommendations