Modelling Small-Scale Drifting Snow with a Lagrangian Stochastic Model Based on Large-Eddy Simulations

Abstract

Observations of drifting snow on small scales have shown that, in spite of nearly steady winds, the snow mass flux can strongly fluctuate in time and space. Most drifting snow models, however, are not able to describe drifting snow accurately over short time periods or on small spatial scales as they rely on mean flow fields and assume equilibrium saltation. In an attempt to gain understanding of the temporal and spatial variability of drifting snow on small scales, we propose to use a model combination of flow fields from large-eddy simulations (LES) and a Lagrangian stochastic model to calculate snow particle trajectories and so infer snow mass fluxes. Model results show that, if particle aerodynamic entrainment is driven by the shear stress retrieved from the LES, we can obtain a snow mass flux varying in space and time. The obtained fluctuating snow mass flux is qualitatively compared to field and wind-tunnel measurements. The comparison shows that the model results capture the intermittent behaviour of observed drifting snow mass flux yet differences between modelled turbulent structures and those likely to be found in the field complicate quantitative comparisons. Results of a model experiment show that the surface shear-stress distribution and its influence on aerodynamic entrainment appear to be key factors in explaining the intermittency of drifting snow.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Albertson JD, Parlange MB (1999) Surface length scales and shear stress: implications for land-atmosphere interaction over complex terrain. Water Resour Res 35(7):2121–2132

    Article  Google Scholar 

  2. Alfredsson PH, Johansson AV, Haritonidis JH, Eckelmann H (1988) The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys Fluids 31(5):1026–1033

    Article  Google Scholar 

  3. Anderson RS, Haff PK (1991) Wind modification and bed response during saltation of sand in air. Acta Mech Suppl 1:21–51

    Article  Google Scholar 

  4. Araoka K, Maeno N (1981) Dynamical behaviour of snow particles in the saltation layer. In Proceedings of 3rd symposium on polar meteorology and glaciology. Memoirs of Nationa Institute of Polar Research, vol 19, Tokyo, pp 253–263

  5. Baas ACW (2008) Challenges in aeolian geomorphology: investigating aeolian streamers. Geomorphology 93(1–2):3–16

    Article  Google Scholar 

  6. Baas ACW, Sherman DJ (2005) Formation and behavior of aeolian streamers. J Geophys Res 110:F03011

    Google Scholar 

  7. Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, London, 265 pp

  8. Bou-Zeid E, Meneveau C, Parlange M (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17(2):025105

    Article  Google Scholar 

  9. Butterfield GR (1998) Transitional behaviour of saltation: wind tunnel observations of unsteady winds. J Arid Environ 39:377–394

    Article  Google Scholar 

  10. Butterfield GR (1999) Application of thermal anemometry and high-frequency measurement of mass flux to aeolian sediment transport research. Geomorphol 29:31–58

  11. Chester S, Meneveau C, Parlange MB (2007) Modeling turbulent flow over fractal trees with renormalized numerical simulation. J Comput Phys 225(1):427–448

    Article  Google Scholar 

  12. Clifton A, Lehning M (2008) Improvement and validation of a snow saltation model using wind tunnel measurements. Earth Surf Process Landf 33:2156–2173

    Article  Google Scholar 

  13. Clifton A, Rüedi J-D, Lehning M (2006) Snow saltation threshold measurements in a drifting snow wind tunnel. J Glaciol 39:585–596

    Article  Google Scholar 

  14. Davidson PA (2004) Turbulence: an introduction for scientists and engineers. Oxford University Press, New York, 657 pp

  15. Deardorff JW (1972) Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29:91–115

    Article  Google Scholar 

  16. Déry SJ, Yau MK (2001) Simulation of blowing snow in the canadian arctic using a double-moment model. Boundary-Layer Meteorol 99:297–316

    Article  Google Scholar 

  17. Diebold M, Higgins C, Fang J, Bechmann A and Parlange M (2013) Flow over hills: a large-eddy simulation of the bolund case. Boundary-Layer Meteorol 148(1):177–194

  18. Doorschot JJJ, Lehning M (2002) Equilibrium saltation: mass fluxes, aerodynamic entrainment, and dependence on grain properties. Boundary-Layer Meteorol 104(1):111–130

    Article  Google Scholar 

  19. Doorschot JJJ, Lehning M, Vrouwe A (2004) Field measurements of snow-drift threshold and mass fluxes, and related model simulations. Boundary-Layer Meteorol 113(3):347–368

    Article  Google Scholar 

  20. Ellis JT, Sherman DJ, Farrell EJ, Li B (2012) Temporal and spatial variability of aeolian sand transport: implications for field measurements. Aeolian Res 3(4):379–387

    Article  Google Scholar 

  21. Gauer P (1999) Blowing and drifting snow in Alpine Terrain: a physically-based numerical model and related field measurements, Eidg. Institut für Schnee- und Lawinenforschung, Mitteilungen Nr 58, 128 pp

  22. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765

    Article  Google Scholar 

  23. Gordon M, Biswas S, Taylor PA, Hanesiak J, Albarran-Melzer M, Fargey S (2010) Measurements of drifting and blowing snow at Iqaluit, Nunavut. Canada during the STAR project. Atmos-Ocean 48(2):81–100

    Article  Google Scholar 

  24. Groot Zwaaftink CD, Mott R, Lehning M (2013) Seasonal simulation of drifting snow sublimation in Alpine terrain. Water Resour Res 49:1581–1590

    Article  Google Scholar 

  25. Guala M, Manes C, Clifton A, Lehning M (2008) On the saltation of fresh snow in a wind tunnel: profile characterization and single particle statistics. J Geophys Res 113:F03024

    Google Scholar 

  26. Hardalupas Y, Horender S (2001) Phase Doppler anemometer for measurements of deterministic spray unsteadiness. Part Part Syst Charact 18(4):205–215

    Article  Google Scholar 

  27. Kok JF, Renno NO (2009) A comprehensive numerical model of steady state saltation (COMSALT). J Geophys Res 114:D17204

    Article  Google Scholar 

  28. Lehning M, Löwe H, Ryser M, Raderschall N (2008) Inhomogeneous precipitation distribution and snow transport in steep terrain. Water Resour Res 44(7):W07404

    Article  Google Scholar 

  29. Lenaerts JTM, van den Broeke MR (2012) Modeling drifting snow in Antarctica with a regional climate model: 2. Results. J Geophys Res 117:D05109

    Google Scholar 

  30. Lieberherr G (2010) Modeling snow drift in the turbulent boundary layer. MSc Thesis, EPFL, Lausanne, 36 pp

  31. Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In Proceedings of the IBM scientific computing symposium on environmental sciences. IBM Form No. 320–1951, White Plains, pp 195–209

  32. Mann GW, Anderson PS, Mobbs SD (2000) Profile measurements of blowing snow at Halley Antarctica. J Geophys Res 105(D19):24491–24508

    Article  Google Scholar 

  33. Moeng CH (1984) A large-eddy simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41:2052–2062

    Article  Google Scholar 

  34. Nemoto M, Nishimura K (2004) Numerical simulation of snow saltation and suspension in a turbulent boundary layer. J Geophys Res 109:D18206

    Article  Google Scholar 

  35. Nield JM, Wiggs GFS (2011) The application of terrestrial laser scanning to aeolian saltation cloud measurement and its response to changing surface moisture. Earth Surf Process Landf 36(2):273–278

    Article  Google Scholar 

  36. Nieuwstadt FTM, Brost RA (1986) The decay of convective turbulence. J Atmos Sci 43(6):532–546

    Article  Google Scholar 

  37. Nishimura K, Hunt JCR (2000) Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer. J Fluid Mech 417:77–102

    Article  Google Scholar 

  38. Nishimura K, Nemoto M (2005) Blowing snow at Mizuho station Antarctica. Philos Trans Roy Soc 363(1832):1647–1662

    Article  Google Scholar 

  39. Overney J (2006) Lagrangian stochastic modeling of heavy particle trajectories in atmospheric turbulence. MSc Thesis, EPFL, Lausanne, 55 pp

  40. Pomeroy JW, Marsh P, Gray DM (1997) Application of a distributed blowing snow model to the arctic. Hydrol Proc 11(11):1451–1464

    Article  Google Scholar 

  41. Porté-Agel F, Meneveau C, Parlange MB (2000) A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415:261–284

    Article  Google Scholar 

  42. Raupach MR (1991) Saltation layers, vegetation canopies and roughness lengths. Acta Mech Suppl 1:83–96

    Article  Google Scholar 

  43. Rice MA, Willetts BB, McEwan IK (1995) An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed. Sedimentol 42(4):695–706

    Article  Google Scholar 

  44. Sato T, Higashiura M (1997) Characteristics of blowing snow fluctuation. In: Izumi M et al (eds) Snow engineering: recent advances. Balkema, Rotterdam, 650 pp

  45. Sato T, Uematsu T, Kaneda Y (1997) Application of random walk model to blowing snow. In: Izumi M et al (eds) Snow engineering: recent advances. Balkema, Rotterdam, 650 pp

  46. Schmidt RA (1982) Vertical profiles of wind speed, snow concentration, and humidity in blowing snow. Boundary-Layer Meteorol 23:223–246

    Article  Google Scholar 

  47. Schneiderbauer S, Prokop A (2011) The atmospheric snow-transport model: SnowDrift3D. J Glaciol 57(203):526–542

    Article  Google Scholar 

  48. Shao Y, Li A (1999) Numerical modelling of saltation in the atmospheric surface layer. Boundary-Layer Meteorol 91:199–225

    Article  Google Scholar 

  49. Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91(3):99–164

    Article  Google Scholar 

  50. Soldati A (2005) Particles turbulence interactions in boundary layers. Z Angew Math Mech 85(10):683–699

    Article  Google Scholar 

  51. Sterk G, Jacobs AFG, Van Boxel JH (1998) The effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer. Earth Surface Process Landf 23:877–887

    Article  Google Scholar 

  52. Stout JE, Zobeck TM (1997) Intermittent saltation. Sedimentology 44:959–970

    Article  Google Scholar 

  53. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

  54. Sturm M, Stuefer S (2013) Wind-blown flux rates derived from drifts at arctic snow fences. J Glaciol 59(213):21–34

    Article  Google Scholar 

  55. Sugiura K, Maeno N (2000) Wind-tunnel measurements of restitution coefficients and ejection number of snow particles in drifting snow: Determination of splash functions. Boundary-Layer Meteorol 95(1):123–143

    Article  Google Scholar 

  56. Sugiura K, Nishimura K, Maeno N, Kimura T (1998) Measurements of snow mass flux and transport rate at different particle diameters in drifting snow. Cold Reg Sci Technol 27(2):83–89

    Article  Google Scholar 

  57. Sundsbø PA, Hansen EWM (1997) Modelling and numerical simulation of snow drift around snow fences. In: Izumi M et al (eds) Snow engineering: recent advances. Balkema, Rotterdam

    Google Scholar 

  58. Thomson DJ (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J Fluid Mech 180:529–556

    Article  Google Scholar 

  59. Tong D, Huang N (2012) Numerical simulation of saltating particles in atmospheric boundary layer over flat bed and sand ripples. J Geophys Res 117:D16205

    Article  Google Scholar 

  60. Vinkovic I (2005) Dispersion et mélange turbulents de particules solides et de gouttelettes par une simulation des grandes échelles et une modélisation stochastique lagrangienne. PhD thesis, Ecole centrale de Lyon

  61. Vinkovic I, Aguirre C, Ayrault M, Simoëns S (2006) Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer. Boundary-Layer Meteorol 121(2):283–311

    Article  Google Scholar 

  62. Vionnet V, Guyomarc’h G, Martin E, Durand Y, Bellot H, Bel C, Puglièse P (2013) Occurrence of blowing snow events at an alpine site over a 10-year period: observations and modelling. Adv Water Resour 55:53–63

    Article  Google Scholar 

  63. Weil JC, Sullivan PP, Moeng CH (2004) The use of large-eddy simulations in Lagrangian particle dispersion models. J Atmos Sci 61:2877–2887

    Article  Google Scholar 

  64. Wilson JD (2000) Trajectory models for heavy particle in atmospheric turbulence: comparison with observations. J Appl Meteorol 39:1894–1912

    Article  Google Scholar 

  65. Winstral A, Marks D (2002) Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol Proc 16(18):3585–3603

    Article  Google Scholar 

Download references

Acknowledgments

We thank Katherine Leonard and Roland Meister for their contribution to the drifting snow measurements at Weissfluhjoch Versuchsfeld. This project is funded by the Swiss National Science Foundation. We thank the reviewers for useful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. D. Groot Zwaaftink.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Groot Zwaaftink, C.D., Diebold, M., Horender, S. et al. Modelling Small-Scale Drifting Snow with a Lagrangian Stochastic Model Based on Large-Eddy Simulations. Boundary-Layer Meteorol 153, 117–139 (2014). https://doi.org/10.1007/s10546-014-9934-2

Download citation

Keywords

  • Drifting snow
  • Lagrangian stochastic model
  • Large-eddy simulations
  • Particle tracking
  • Saltation
  • Surface shear stress