Boundary-Layer Meteorology

, Volume 152, Issue 1, pp 19–44 | Cite as

Detection of Entrainment Influences on Surface-Layer Measurements and Extension of Monin–Obukhov Similarity Theory

  • A. van de Boer
  • A. F. Moene
  • A. Graf
  • D. Schüttemeyer
  • C. Simmer


We present a method to detect influences of boundary-layer processes on surface-layer measurements, using statistics and spectra of surface-layer variables only. We validated our detection method with boundary-layer measurements. Furthermore, we confirm that Monin–Obukhov similarity functions fit well to temperature-variance data obtained at two different homogeneous surfaces. However, we found that humidity variance measurements deviate from the universal functions above one of the two studied surfaces for days on which entrained air reached the surface layer. These results confirm that Monin–Obukhov similarity theory should be used with care in the analysis of surface-layer data. Finally, we propose the use of an extra term in flux-variance relations that depends on the entrainment ratio for humidity and on the boundary-layer height. If boundary-layer measurements are not available, we show how the entrainment ratio for humidity can be approximated from the skewness of the humidity distribution.


Boundary-layer scaling Eddy covariance Entrainment Monin–Obukhov similarity theory Surface layer  Turbulence 



We greatly thank Oscar Hartogensis, Olivier de Coster, Henk Pietersen (Wageningen UR, the Netherlands) and Martin Lennefer (University Bonn, Germany) for their help with EC measurements before, during and after the BLLAST campaign. Furthermore, we thank Christine Moene for assisting in mapping the surroundings of the EC stations. We also thank Miranda Braam for her assistance with data processing and visualizing Fig. 1, and Jordi Vilà-Guerau de Arellano and Huug Ouwersloot (Wageningen UR, the Netherlands) for their critical notes on our study. We thank Fabienne Lohou (Laboratoire d’Aérologie Toulouse, France) and two anonymous reviewers for their critical comments and helpful suggestions. Furthermore, we thank Ned Patton (NCAR Boulder, US) for providing the detailed data from his LES study of 10 years ago. This work was financed by the DFG (Deutsche Forschungsgemeinschaft) project GR2687/3-1 and SCHU2350/2-1; links between local-scale measurements and catchment-scale measurements and modelling of gas exchange processes over land surfaces. The BLLAST field experiment was made possible thanks to the contribution of several institutions and supports: INSU-CNRS (Institut National des Sciences de l’Univers, Centre national de la Recherche Scientifique, LEFE-IDAO program), Météo-France, Observatoire Midi-Pyrénées (University of Toulouse), EUFAR (EUropean Facility for Airborne Research) and COST ES0802 (European Cooperation in the field of Scientific and Technical). The field experiment would not have occurred without the contribution of all participating European and American research groups, which all have contributed in a significant amount (see supports). The BLLAST field experiment was hosted by the instrumented site of Centre de Recherches Atmosphériques, Lannemezan, France (Observatoire Midi-Pyrénées, Laboratoire dAérologie). BLLAST data are managed by SEDOO, from Observatoire Midi-Pyrénées. The MODEM radiosoundings were supported by CNRS, University of Toulouse and the FEDER program (Contract nr. 34172—Development of the instrumentation of Observatoire Midi-Pyrénées—PIRENEA—ESPOIR). The 60-m tower equipment was also supported by CNRS, Université Paul Sabatier and by the European POCTEFA FluxPyr program.


  1. Angevine WM (2008) Transitional, entraining, cloudy, and coastal boundary layers. Acta Geophys 56(1):2–20CrossRefGoogle Scholar
  2. Betts AK (1992) FIFE atmospheric boundary layer budget methods. J Geophys Res 97(D17):18523CrossRefGoogle Scholar
  3. Braam M, Bosveld FC, Moene AF (2012) On Monin–Obukhov scaling in and above the atmospheric surface layer: the complexities of elevated scintillometer measurements. Boundary-Layer Meteorol 144(2): 157–177Google Scholar
  4. Canut G, Lothon M, Saïd F, Lohou F (2010) Observation of entrainment at the interface between monsoon flow and the Saharan air layer. Q J R Meteorol Soc 136(S1):34–46CrossRefGoogle Scholar
  5. Couvreux F, Guichard F, Masson V, Redelsperger J-L (2007) Negative water vapour skewness and dry tongues in the convective boundary layer: observations and large-eddy simulation budget analysis. Boundary-Layer Meteorol 123(2):269–294CrossRefGoogle Scholar
  6. Cuxart J, Morales G, Terradellas E (2002) Pressure transport terms for the nocturnal stable boundary layer. Boundary-Layer Meteorol 105(1994):305–328CrossRefGoogle Scholar
  7. De Bruin H, Kohsiek W, van den Hurk J (1993) A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63:231–257CrossRefGoogle Scholar
  8. De Bruin H, van den Hurk BJJM, Kroon LJM (1999) On the temperature-humidity correlation and similarity. Boundary-Layer Meteorol 93:453–468CrossRefGoogle Scholar
  9. de Moortel I, Munday S, Hood A (2004) Wavelet analysis: the effect of varying basic wavelet parameters. Solar Phys 222(2):203–228CrossRefGoogle Scholar
  10. Deardorff J (1980) Cloud top entrainment instability. J Atmos Sci 37:131–147CrossRefGoogle Scholar
  11. Farge M, Kevlahan N, Perrier V, Goirand E (1996) Wavelets and turbulence. Proc IEEE 84(4):639–669CrossRefGoogle Scholar
  12. Graf A, Schüttemeyer D, Geiß H, Knaps A, Möllmann-Coers M, Schween JH, Kollet S, Neininger B, Herbst M, Vereecken H (2010) Boundedness of turbulent temperature probability distributions, and their relation to the vertical profile in the convective boundary layer. Boundary-Layer Meteorol 134(3):459–486CrossRefGoogle Scholar
  13. Hägeli P, Steyn D, Strawbridge K (2000) Spatial and temporal variability of mixed-layer depth and entrainment zone thickness. Boundary-Layer Meteorol 97(1):47–71CrossRefGoogle Scholar
  14. Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78(3–4):215–246CrossRefGoogle Scholar
  15. Hsieh C, Katul G, Chi T-W (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772CrossRefGoogle Scholar
  16. Hudgins L, Friehe CA, Mayer M (1993) Wavelet transforms and atmospheric turbulence. Phys Lett 71(20):3279–3283CrossRefGoogle Scholar
  17. Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98(417):563–589CrossRefGoogle Scholar
  18. Katul GG, Sempreviva AM, Cava D (2008) The temperature humidity covariance in the marine surface layer: a one-dimensional analytical model. Boundary-Layer Meteorol 126:263–278CrossRefGoogle Scholar
  19. Kimmel SJ, Wyngaard JC, Otte MJ (2002) Log-chipper turbulence in the convective boundary layer. J Atmos Sci 59(6):1124–1134CrossRefGoogle Scholar
  20. Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol 99:207–224CrossRefGoogle Scholar
  21. Lenschow DH, Wulfmeyer V, Senff C (2000) Measuring second-through fourth-order moments in noisy data. J Atmos Oceanic Tech 17(10):1330–1347CrossRefGoogle Scholar
  22. Lohou F, Saïd F, Lothon M, Durand P, Serça D (2010) Impact of boundary-layer processes on near-surface turbulence within the West African monsoon. Boundary-Layer Meteorol 136(1):1–23CrossRefGoogle Scholar
  23. Lothon M, Couvreux F, Donier S, Guichard F, Lacarrère P, Lenschow DH, Noilhan J, Saïd F (2007) Impact of coherent eddies on airborne measurements of vertical turbulent fluxes. Boundary-Layer Meteorol 124:425–447CrossRefGoogle Scholar
  24. Lothon M, Couvreux F, Durand P, Hartogensis O, Legain D, Lohou F, Pardyjak ER, Pino D, Reuder J, VilàGuerau de Arellano J, Alexander D, Augustin P, Bargain E, Barrié J, Bazile E, Bezombes Y, BlayCarreras E, van de Boer A, Boichard JL, de Coster O, Cuxart J, Dabas A, Darbieu C, Deboudt K, Delbarre H, Derrien S, Faloona I, Flamant P, Fourmentin M, Garai A, Gibert F, Gioli B, Graf A, Groebner J, Guichard F, Jonassen M, van den Kroonenberg A, Lenschow D, Martin S, Martinez D, Mastrorillo L, Moene AF, Molinos F, Moulin E, Pietersen H, Piguet B, Pique E, RománGascón C, Saïd F, Sastre M, Seity Y, Steeneveld GJ, Toscano P, Traullé O, Tzanos YCD, Wacker S, Wildmann N, Zaldei A (2012) The boundary layer late afternoon and sunset turbulence 2011 field experiment. In: 20th symposium on boundary layers and turbulence/18th conference on air-sea interaction, Boston, Massachusetts, USA, 13 July 2012, 14B.1Google Scholar
  25. Mahrt L (1991) Boundary-layer moisture regimes. Q J R Meteorol Soc 117(497):151–176CrossRefGoogle Scholar
  26. Mahrt L, Lenschow DH (1976) Growth dynamics of the convectively mixed layer. J Atmos Sci 33:41–51CrossRefGoogle Scholar
  27. Mauder M, Desjardins RL, Oncley SP, MacPherson I (2007) Atmospheric response to a partial solar eclipse over a cotton field in central California. J Appl Meteorol Climatol 46(11):1792–1803CrossRefGoogle Scholar
  28. Michels BI, Jochum AM (1995) Heat and moisture flux profiles in a region with inhomogeneous surface evaporation. J Hydrol 166(3–4):383–407CrossRefGoogle Scholar
  29. Moene AF, Schüttemeyer D (2008) The effect of surface heterogeneity on the temperature humidity correlation and the relative transport efficiency. Boundary-Layer Meteorol 129(1):99–113CrossRefGoogle Scholar
  30. Moene AF, Michels BI, Holtslag AAM (2006) Scaling variances of scalars in a convective boundary layer under different entrainment regimes. Boundary-Layer Meteorol 120(2):257–274CrossRefGoogle Scholar
  31. Moeng C-H, Wyngaard JC (1989) Evaluation of turbulent transport and dissipation closures in second-order modeling. Am Meteorol Soc 46(14):2311–2330Google Scholar
  32. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Trudy geofiz inst AN SSSR 24(151):163–187Google Scholar
  33. Obukhov AM (1946) Turbulence in an atmosphere with a non-uniform temperature. Trudy Inst Theor Geofiz AN SSSR 1:95–115Google Scholar
  34. Oncley SP, Friehe CA, Larue JC, Businger JA, Itsweire EC, Chang SS (1996) Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J Atmos Sci 53(7):1029–1044CrossRefGoogle Scholar
  35. Patton EG, Sullivan PP, Davis KJ (2003) The influence of a forest canopy on top-down and bottom-up diffusion in the planetary boundary layer. Q J R Meteorol Soc 129(590):1415–1434CrossRefGoogle Scholar
  36. Pino D, Vilà-Guerau de Arellano J, Duynkerke PG (2003) The contribution of shear to the evolution of a convective boundary layer. J Atmos Sci 60(16):1913–1926CrossRefGoogle Scholar
  37. Schotanus P, Nieuwstadt F, De Bruin H (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol 26:81–93CrossRefGoogle Scholar
  38. Sempreviva AM, Gryning S-E (2000) Mixing height over water and its role on the correlation between temperature and humidity fluctuations in the unstable surface layer. Boundary-Layer Meteorol 97:273–291CrossRefGoogle Scholar
  39. Sempreviva AM, Højstrup J (1998) Transport of temperature and humidity variance and covariance in the marine surface layer. Boundary-Layer Meteorol 87:233–253CrossRefGoogle Scholar
  40. Sorbjan Z (1996) Effects caused by varying the strength of the capping inversion based on a large eddy simulation model of the shear-free convective boundary layer. J Atmos Sci 53(14):2015–2024CrossRefGoogle Scholar
  41. Tapper NJ (1990) Urban influences on boundary layer temperature and humidity: results from Christchurch, New Zealand. Atmos Environ 24B(1):19–27CrossRefGoogle Scholar
  42. Terradellas E, Morales G, Cuxart J, Yagüe C (2001) Wavelet methods: application to the study of the stable atmospheric boundary layer under non-stationary conditions. Dyn Atmos Oceans 34(2–4):225–244CrossRefGoogle Scholar
  43. van de Boer A, Moene AF, Schuettemeyer D (2013) Sensitivity and uncertainty of analytical footprint models according to a combined natural tracer and ensemble approach. Agric For Meteorol 169:1–11CrossRefGoogle Scholar
  44. van Dijk A, Moene AF, De Bruin HAR (2004) The principles of surface flux physics: theory, practice and description of the ECPACK library. Internal Report 2004/1, Meteorology and air quality group, Wageningen University, Wageningen, the Netherlands (March 2004), 99 ppGoogle Scholar
  45. Vilà-Guerau de Arellano J (2004) Entrainment process of carbon dioxide in the atmospheric boundary layer. J Geophys Res 109(D18):1–15Google Scholar
  46. Webb E, Pearman G, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100CrossRefGoogle Scholar
  47. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. van de Boer
    • 1
    • 2
  • A. F. Moene
    • 1
  • A. Graf
    • 3
  • D. Schüttemeyer
    • 2
  • C. Simmer
    • 2
  1. 1.Meteorology and Air Quality SectionWageningen UniversityWageningenThe Netherlands
  2. 2.Meteorological Institute University BonnBonnGermany
  3. 3.Agrosphere InstituteForschungszentrum JülichJülichGermany

Personalised recommendations