Boundary-Layer Meteorology

, Volume 150, Issue 3, pp 515–523 | Cite as

Observational Support for the Stability Dependence of the Bulk Richardson Number Across the Stable Boundary Layer

  • S. Basu
  • A. A. M. Holtslag
  • L. Caporaso
  • A. Riccio
  • G.-J. Steeneveld
Research Note

Abstract

The bulk Richardson number (\(Ri_{Bh}\); defined over the entire stable boundary layer) is commonly utilized in observational and modelling studies for the estimation of the boundary-layer height. Traditionally, \(Ri_{Bh}\) is assumed to be a quasi-universal constant. Recently, based on large-eddy simulation and wind-tunnel data, a stability-dependent relationship has been proposed for \(Ri_{Bh}\). In this study, we analyze extensive observational data from several field campaigns and provide further support for this newly proposed relationship.

Keywords

Boundary-layer height Stable boundary layer Turbulence 

References

  1. Arya SP (1999) Air pollution meteorology and dispersion. Oxford University Press, New York, 310 ppGoogle Scholar
  2. Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in flux-gradient relationships for stably stratified conditions. J Atmos Sci 63:3045–3054Google Scholar
  3. Basu S, Holtslag AAM, van de Wiel BJH, Moene AF, Steeneveld GJ (2008) An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophys 56:88–99CrossRefGoogle Scholar
  4. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric boundary layer. J Atmos Sci 30:788–794Google Scholar
  5. Caporaso L, Riccio A, Giuseppe FD, Tampieri F (2013) Relating mean radiosounding profiles to surface fluxes for the very stable boundary layer. Boundary-Layer Meteorol 147:203–215CrossRefGoogle Scholar
  6. Chatterjee S, Hadi AS (2012) Regression analysis by example, 5th edn. John Wiley & Sons Inc., Hoboken, 424 ppGoogle Scholar
  7. Cook RD (1977) Detection of influential observation in linear regression. Technometrics 19:15–18CrossRefGoogle Scholar
  8. de Bruin HAR, Ronda RJ, van De Wiel BJH (2000) Approximate solutions for the Obukhov length and the surface fluxes in terms of bulk Richardson numbers. Boundary-Layer Meteorol 95:145–157Google Scholar
  9. Dyer AJ (1974) A review of flux-profile relations. Boundary-Layer Meteorol 1:363–372CrossRefGoogle Scholar
  10. Efron B (1982) The jackknife, the bootstrap and other resampling plans, vol 38. SIAM, PhiladelphiaGoogle Scholar
  11. Esau I, Zilitinkevich S (2010) On the role of the planetary boundary layer depth in the climate system. Adv Sci Res 4:63–69CrossRefGoogle Scholar
  12. Fox J (1991) Regression diagnostics: an introduction. Sage Publications Inc., Newbury Park, 96 ppGoogle Scholar
  13. García JA, Cancillo ML, Cano JL (2002) A case study of the morning evolution of the convective boundary layer depth. J Appl Meteorol 41:1053–1059Google Scholar
  14. Golder D (1972) Relations among stability parameters in the surface layer. Boundary-Layer Meteorol 3:47–58CrossRefGoogle Scholar
  15. Good PI (2006) Resampling methods: a practical guide to data analysis, 3rd edn. Birkhäuser, Boston, 218 ppGoogle Scholar
  16. Grachev A, Fairall C (1997) Dependence of the Monin–Obukhov stability parameter on the bulk Richardson number over the ocean. J Appl Meteorol 36:406–414CrossRefGoogle Scholar
  17. Gryning SE, Batchvarova E (2003) Marine atmospheric boundary-layer height estimated from NWP model output. Int J Environ Poll 20:147–153Google Scholar
  18. Heinemann G, Rose L (1990) Surface energy balance, parameterizations of boundary-layer heights and the application of resistance laws near an Antarctic ice shelf front. Boundary-Layer Meteorol 51:123–158CrossRefGoogle Scholar
  19. Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat Theory Methods 6:813–827CrossRefGoogle Scholar
  20. Holtslag AAM, Boville BA (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6:1825–1842CrossRefGoogle Scholar
  21. Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575CrossRefGoogle Scholar
  22. Hong SY (2010) A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q J R Meteorol Soc 136:1481–1496CrossRefGoogle Scholar
  23. Jeričević A, Grisogono B (2006) The critical bulk Richardson number in urban areas: verification and application in numerical weather prediction model. Tellus 58A:19–27Google Scholar
  24. Klipp CL, Mahrt L (2004) Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J R Meteorol Soc 130:2087–2103CrossRefGoogle Scholar
  25. Launiainen J (1995) Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux-profile studies. Boundary-Layer Meteorol 76:165–179CrossRefGoogle Scholar
  26. Mahrt L (1981) Modelling the depth of the stable boundary-layer. Boundary-Layer Meteorol 21:3–19CrossRefGoogle Scholar
  27. Mahrt L (1998) Stratified atmospheric boundary layers and breakdown of models. Theor Comput Fluid Dyn 11:263–279CrossRefGoogle Scholar
  28. Malhi YS (1995) The significance of the dual solutions for heat fluxes measured by the temperature fluctuations method in stable conditions. Boundary-Layer Meteorol 74:389–396CrossRefGoogle Scholar
  29. Massart DL, Kaufman L, Rousseeuw PJ, Leroy A (1986) Least median of squares: a robust method for outlier and model error detection in regression and calibration. Anal Chim Acta 187:171–179CrossRefGoogle Scholar
  30. Mathworks (2012) MATLAB and Statistics Toolbox Release 2012b. The Mathworks Inc., NatickGoogle Scholar
  31. Melgarejo JW, Deardorff JW (1974) Stability functions for the boundary-layer resistance laws based upon observed boundary-layer heights. J Atmos Sci 31:1324–1333CrossRefGoogle Scholar
  32. Mooney CZ, Duval RD (1993) Bootstrapping: a nonparametric approach to statistical inference. Sage Publications Inc., Newbury Park, 73 ppGoogle Scholar
  33. Nieuwstadt FTM (1985) A model for the stationary, stable boundary layer. In: Hunt JCR (ed) Turbulence and diffusion in stable environments. Clarendon Press, Oxford, pp 149–179Google Scholar
  34. Richardson H, Basu S, Holtslag AAM (2013) Improving stable boundary-layer height estimation using a stability-dependent critical bulk Richardson number. Boundary-Layer Meteorol. doi:10.1007/s10546-013-9812-3
  35. Rousseeuw PJ (1984) Least median of squares regression. J Am Stat Assoc 79(388):871–880CrossRefGoogle Scholar
  36. Rousseeuw PJ, Leroy AM (2003) Robust regression and outlier detection. John Wiley & Sons Inc., Hoboken, 360 ppGoogle Scholar
  37. Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (1998) Mixing height determination for dispersion modelling, COST Action 710-Final Report, Harmonisation of the pre-processing of meteorological data for atmospheric dispersion models, L-2985 Luxembourg: European Commission, EUR 18195 EN (ISBN 92-828-3302-X)Google Scholar
  38. Singh K (1998) Breakdown theory for bootstrap quantiles. Ann Stat 26:1719–1732CrossRefGoogle Scholar
  39. Sørensen JH, Rasmussen A, Svensmark H (1996) Forecast of atmospheric boundary-layer height utilised for ETEX real-time dispersion modelling. Phys Chem Earth 21:435–439Google Scholar
  40. Srivastava DK, Pan J, Sarkar I, Mudholkar GS (2009) Robust winsorized regression using bootstrap approach. Commun Stat Simul Comput 39(1):45–67CrossRefGoogle Scholar
  41. Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2007) Diagnostic equations for the stable boundary layer height: evaluation and dimensional analysis. J Appl Meteorol Climatol 46(2):212–225CrossRefGoogle Scholar
  42. Street JO, Carroll RJ, Ruppert D (1988) A note on computing robust regression estimates via iteratively reweighted least squares. Am Stat 42:152–154Google Scholar
  43. Troen IB, Mahrt L (1986) A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorol 37:129–148CrossRefGoogle Scholar
  44. Verkaik JW, Holtslag AAM (2007) Wind profiles, momentum fluxes and roughness lengths at Cabauw revisited. Boundary-Layer Meteorol 122:701–719CrossRefGoogle Scholar
  45. Vickers D, Mahrt L (2004) Evaluating formulations of stable boundary layer height. J Appl Meteorol 43:1736–1749CrossRefGoogle Scholar
  46. Vogelezang DHP, Holtslag AAM (1996) Evaluation and model impacts of alternative boundary-layer height formulations. Boundary-Layer Meteorol 81:245–269CrossRefGoogle Scholar
  47. Wilcox RR (2012) Introduction to robust estimation and hypothesis testing, 3rd edn. Academic Press, Waltham, 608 ppGoogle Scholar
  48. Zilitinkevich S, Baklanov A (2002) Calculation of the height of the stable boundary layer in practical applications. Boundary-Layer Meteorol 105:389–409CrossRefGoogle Scholar
  49. Zoumakis NM, Kelessis AG (1991) The dependence of the bulk Richardson number on stability in the surface layer. Boundary-Layer Meteorol 57:407–414CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. Basu
    • 1
  • A. A. M. Holtslag
    • 2
  • L. Caporaso
    • 3
  • A. Riccio
    • 4
  • G.-J. Steeneveld
    • 2
  1. 1.Department of Marine, Earth, and Atmospheric SciencesNorth Carolina State UniversityRaleighUSA
  2. 2.Meteorology and Air Quality SectionWageningen UniversityWageningenThe Netherlands
  3. 3.ICTPTriesteItaly
  4. 4.Department of Applied ScienceUniversity of Naples ‘Parthenope’NaplesItaly

Personalised recommendations