Skip to main content
Log in

An Experimental Study of the Statistics of Temperature Fluctuations in the Atmospheric Boundary Layer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A statistical characterization for two-point temperature fluctuations in the planetary boundary layer (PBL) is analyzed and its implications on the long-standing closure problem discussed. Despite the non-triviality of the dynamics of temperature fluctuations, our analysis supports the idea that the most relevant statistical properties can be captured solely in terms of two scaling exponents. They turned out to be weakly dependent on the stability properties of the PBL. Its statistics have been investigated by collecting data from a field experiment carried out in the urban area of Turin (Italy) from January 2007 to March 2008. Our results confirm those from a large-eddy simulation (LES) analysis carried out for the convective PBL with different level of convection. We extend the scenario to the stable PBL, a regime much more difficult to simulate when exploiting LES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adzhemyan LT, Antonov NV, Mazzino A, Muratore-Ginanneschi P, Runov AV (2001) Pressure and intermittency in passive vector turbulence. Europhys Lett 55:801–806

    Article  Google Scholar 

  • Antonelli M, Mazzino A, Rizza U (2003) Statistics of temperature fluctuation in a buoyancy-dominated boundary-layer flow simulated by a large eddy simulation model. J Atmos Sci 60:215–224

    Article  Google Scholar 

  • Antonelli M, Afonso MM, Mazzino A, Rizza U (2005) Structure of temperature fluctuation in turbulent convective boundary-layer. J Turbul 6:1–34

    Article  Google Scholar 

  • Baklanov AA, Grisogono BR, Bornstein R, Mahrt LA, Zilitinkevich SS, Taylor P, Arsen SEL, Rotach MW, Fernando HJS (2011) The nature, theory, and modeling of atmospheric planetary boundary-layers. Bull Am Meteorol Soc 92(2):123–128

    Article  Google Scholar 

  • Balkovsky E, Lebedev V (1998) Instanton for the Kraichnan passive scalar problem. Phys Rev E 58:5776–5795

    Article  Google Scholar 

  • Basu S, Foufoula-Georgiou E, Porté-Agel F (2004) Synthetic turbulence, fractal interpolation and large-eddy simulation. Phys Rev E 70:026310

    Article  Google Scholar 

  • Boffetta G, Mazzino A, Vulpiani A (2008) Twenty-five years of multifractals in fully developed turbulence: a tribute to Giovanni Paladin. J Phys A 41:363001

    Google Scholar 

  • Cassardo C, Sacchetti D, Morselli MG, Anfossi D, Brusasca G, Longhetto A (1995) A study of the assessment of air temperature, and sensible and latent heat fluxes from sonic anemometer observations. Il Nuovo Cimento 18C:419–440

    Google Scholar 

  • Celani A, Lanotte A, Mazzino A, Vergassola M (2000) Universality and saturation of intermittency in passive scalar turbulence. Phys Rev Lett 84:2385–2388

    Article  Google Scholar 

  • Celani A, Lanotte A, Mazzino A, Vergassola M (2001a) Fronts in passive scalar turbulence. Phys Fluids 13:1768–1783

    Article  Google Scholar 

  • Celani A, Mazzino A, Vergassola M (2001b) Thermal plume turbulence. Phys Fluids 13:2133–2135

    Article  Google Scholar 

  • Celani A, Cencini M, Mazzino A, Vergassola M (2002) Active versus passive scalar turbulence. Phys Rev Lett 89:23450-21–23450-24

    Google Scholar 

  • Celani A, Cencini M, Mazzino A, Vergassola M (2004) Active and passive fields face to face. New J Phys 6:1–35

    Article  Google Scholar 

  • Celani A, Falkovich G, Mazzino A, Seminara A (2005) Droplet condensation in turbulent flows. Europhys Lett 70:775–781

    Article  Google Scholar 

  • Chertkov M (1997) Instanton for random advection. Phys Rev E 55:2722–2735

    Article  Google Scholar 

  • Falkovich G, Gawedzki K, Vergassola M (2001) Particles and fields in fluid turbulence. Rev Mod Phys 73:913–975

    Article  Google Scholar 

  • Falkovich G, Fouxon A, Stepanov MG (2002) Acceleration of rain initiation by cloud turbulence. Nature 419:151–154

    Article  Google Scholar 

  • Fisher B, Kukkonen J, Piringer M, Rotach M, Schatzmann M (2006) Meteorology applied to urban air pollution problems: concepts from cost 715. Atmos Chem Phys 6:555–564

    Article  Google Scholar 

  • Frisch U (1995) Turbulence. The legacy of A.N.Kolmogorov. Cambridge University Press, Cambridge, 296 pp

  • Frisch U, Mazzino A, Vergassola M (1998) Intermittency in passive scalar advection. Phys Rev Lett 80:5732–5537

    Article  Google Scholar 

  • Frisch U, Mazzino A, Noullez A, Vergassola M (1999) Lagrangian method for multiple correlations in passive scalar advection. Phys Fluids 11:2178–2186

    Article  Google Scholar 

  • McMillen R (1998) An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol 43:231–245

    Article  Google Scholar 

  • Mortarini L, Ferrero E, Richiardone R, Falabino S, Anfossi D, Trini-Castelli S, Carretto E (2009) Assessment of dispersion parametrizations through wind data measured by three sonic anemometers in a urban canopy. Adv Sci Res 3:91–98

    Article  Google Scholar 

  • Mortarini L, Ferrero E, Falabino S, Trini-Castelli S, Richiardone R, Anfossi D (2013) Low-frequency processes and turbulence structure in a perturbed boundary layer. Q J R Meteorol Soc 139:1059–1072

    Google Scholar 

  • Richiardone R, Manfrin M, Ferrarese S, Francone C, Fernicola V, Gavioso RM, Mortarini L (2012) Influence of the sonic anemometer temperature calibration on turbulent heat-flux measurements. Boundary-Layer Meteorol 142:425–442

    Article  Google Scholar 

  • Sawford BL (2001) Turbulent relative dispersion. Annu Rev Fluid Mech 33:289–317

    Article  Google Scholar 

  • Schraiman BI, Siggia ED (2000) Scalar turbulence. Nature 405:639–646

    Article  Google Scholar 

  • Scotti A, Meneveau C (1997) Fractal model for coarse grained non linear partial differential equation. Phys Rev Lett 78:867–870

    Article  Google Scholar 

  • Vergassola M, Mazzino A (1997) Structures and intermittency in a passive scalar model. Phys Rev Lett 79:1849–1852

    Article  Google Scholar 

  • Wyngaard J (2010) Turbulence in the atmosphere. Cambridge University Press, Cambridge, 393 pp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Mazzino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa Frola, E., Mazzino, A., Cassola, F. et al. An Experimental Study of the Statistics of Temperature Fluctuations in the Atmospheric Boundary Layer. Boundary-Layer Meteorol 150, 91–106 (2014). https://doi.org/10.1007/s10546-013-9855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9855-5

Keywords

Navigation