Boundary-Layer Meteorology

, Volume 148, Issue 3, pp 479–494 | Cite as

Transfer Coefficients of Momentum, Heat and Water Vapour in the Atmospheric Surface Layer of a Large Freshwater Lake

Article

Abstract

In studies of lake–atmosphere interactions, the fluxes of momentum, water vapour and sensible heat are often parametrized as being proportional to the differences in wind, humidity and air temperature between the water surface and a reference height above the surface. Here, the proportionality via transfer coefficients in these relationships was investigated with the eddy-covariance method at three sites within an eddy-covariance mesonet across Lake Taihu, China. The results indicate that the transfer coefficients decreased with increasing wind speed for weak winds and approached constant values for strong winds. The presence of submerged macrophytes reduced the momentum transfer (drag) coefficient significantly. At the two sites free of submerged macrophytes, the 10-m drag coefficients under neutral stability were 1.8 \((\pm \,0.4) \times \,10^{-3}\) and \(1.7\,(\pm \,0.3) \times \,10^{-3 }\) at the wind speed of \(9\,\text{ m } \text{ s }^{-1}\), which are 38 and 34 % greater than the prediction by the Garratt model for the marine environment.

Keywords

Eddy covariance Evaporation Lake Taihu Sensible heat Submerged macrophytes Transfer coefficients 

References

  1. Ataktürk SS, Katsaros KB (1999) Wind stress and surface waves observed on Lake Washington. J Phys Oceanogr 29:633–650Google Scholar
  2. Barko JW, James WJ (1998) Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In: Jeppesen E et al (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp 197–214Google Scholar
  3. Blanken PD, Rouse WR, Culf AD, Spence C, Boudreau LD, Jasper JN, Kochtubajda B, Schertzer WM, Marsh P, Verseghy D (2000) Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada. Water Resour Res 36:1069–1077CrossRefGoogle Scholar
  4. Blanken PD, Rouse WR, Schertzer WM (2003) Enhancement of evaporation from a large northern lake by the entrainment of warm, dry air. J Hydrometeorol 4:680–693CrossRefGoogle Scholar
  5. Blanken PD, Spence C, Hedstrom N, Lenters JD (2011) Evaporation from Lake Superior: 1. Physical controls and processes. J Great Lakes Res 37:707–716CrossRefGoogle Scholar
  6. Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370CrossRefGoogle Scholar
  7. Chen Y, Qin B, Teubner K, Dokulil MT (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25:445–453CrossRefGoogle Scholar
  8. Dale HM, Gillespie TJ (1977) The influence of submersed aquatic plants on temperature gradients in shallow water bodies. Can J Bot 55:2216–2225CrossRefGoogle Scholar
  9. Davidan IN, Lopatuhin LI, Rozhkov VA (1985) Waves in the world ocean (in Russian). Gidrometeoizdat, Leningrad, p 256Google Scholar
  10. Deacon EL (1977) Gas transfer to and across an air–water interface. Tellus 29:363–374CrossRefGoogle Scholar
  11. Deng B, S Liu, W Xiao, W Wang, J Jin, X Lee (2013) Evaluation of the CLM4 lake model at a large and shallow freshwater lake. J Hydrometeorol 14:636–649Google Scholar
  12. Donelan MA, Dobson FW, Smith SD, Anderson RJ (1993) On the dependence of sea-surface roughness on wave development. J Phys Oceanogr 23:2143–2149. doi:10.1175/1520-0485(1993)023<2143:OTDOSS>2.0.CO;2 Google Scholar
  13. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397CrossRefGoogle Scholar
  14. Fairall CW, Bradley EF, Godfrey JS, Wick GA, Edson JB, Young GS (1996) Cool-skin and warm-layer effects on the sea surface temperature. J Geophys Res 101:1295–1308Google Scholar
  15. Foken T (2008) Micrometeorology. Springer, BerlinGoogle Scholar
  16. Gao ZQ, Wang Q, Zhou MY (2009) Wave-dependence of friction velocity, roughness length, and drag coefficient over coastal and open water surfaces by using three databases. Adv Atmos Sci 26:887–894CrossRefGoogle Scholar
  17. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, CambridgeGoogle Scholar
  18. Geernaert GL, Larsen SE, Hansen F (1987) Measurements of the wind-stress, heat-flux and turbulence intensity during storm conditions over the north sea. J Geophys Res 92:13127–13139CrossRefGoogle Scholar
  19. Grachev AA, Fairall CW, Larsen SE (1998) On the determination of the neutral drag coefficient in the convective boundary layer. Boundary-Layer Meteorol 86:257–278CrossRefGoogle Scholar
  20. Grachev AA, Bariteau L, Fairall CW, Hare JE, Helmig D, Hueber J, Lang EK (2011) Turbulent fluxes and transfer of trace gases from ship-based measurements during TexAQS 2006. J Geophys Res 116:D13110CrossRefGoogle Scholar
  21. Heikinheimo M, Kangas M, Tourula T, Venäläinen A, Tattari S (1999) Momentum and heat fluxes over lakes Tämnaren and Råksjö determined by the bulk-aerodynamic and eddy-correlation methods. Agric For Meteorol 98–99:521–534CrossRefGoogle Scholar
  22. Henderson-Sellers B (1986) Calculating the surface energy balance for lake and reservoir modeling: A review. Rev Geophys 24:625–649CrossRefGoogle Scholar
  23. Herb WR, Stefan HG (2005) Dynamics of vertical mixing in a shallow lake with submersed macrophytes. Water Resour Res 41:W02023. doi:10.1029/2003WR002613 CrossRefGoogle Scholar
  24. Hinze JO (1975) Turbulence: an introduction to its mechanism and theory, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  25. Hsieh CI, Katul G, Chi T (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772CrossRefGoogle Scholar
  26. James WF, Barko JW (2000) Sediment resuspension dynamics in canopy- and meadow-forming submersed macrophyte communities. Rep ERDC/EL SR-00-8, US Army Corps of Engineers, Vicksburg, Miss, USA, 38 ppGoogle Scholar
  27. Johnson RK, Ostrofsky ML (2004) Effects of sediment nutrients and depth on small-scale spatial heterogeneity of submersed macrophyte communities in Lake Pleasant, Pennsylvania. Can J Fish Aquat Sci 61:1493–1502CrossRefGoogle Scholar
  28. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New YorkGoogle Scholar
  29. Lee X, Massman W (2011) A perspective on thirty years of the Webb, Pearman and Leuning density corrections. Boundary-Layer Meteorol 139:37–59. doi:10.1007/s10546-010-9575-z CrossRefGoogle Scholar
  30. Lee X, Massman W, Law B (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, DordrechtGoogle Scholar
  31. Liu H, Randerson JT, Lindfors J, Chapin III FS (2005) Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: an annual perspective. J Geophys Res 110:D13101. doi:10.1029/2004JD005158
  32. Liu H, Zhang Y, Liu S, Jiang H, Sheng L, Williams QL (2009) Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississippi. J Geophys Res 114:D04110. doi:10.1029/2008JD010891
  33. Losee RF, Wetzel RC (1993) Littoral flow rates within and around submersed macrophyte communities. Freshwater Biol 29:7–17CrossRefGoogle Scholar
  34. MacKay MD, Neale PJ, Arp CD, De Senerpont Domis LN, Fang X, Gal G, Jöhnk KD, Kirillin G, Lenters JD, Litchman E, MacIntyre S, Marsh P, Melack J, Mooij WM, Peeters F, Quesada A, Schladow SG, Schmid M, Spence C, Stokes SL (2009) Modeling lakes and reservoirs in the climate system. Limnol Oceanogr 54:2315–2329CrossRefGoogle Scholar
  35. Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84CrossRefGoogle Scholar
  36. Matt N, Kraan C, Oost WA (1991) The roughness of wind-waves. Boundary-Layer Meteorol 54:89–103. doi:10.1007/BF00119414 CrossRefGoogle Scholar
  37. Moraes OLL (2000) Turbulence characteristics in the surface boundary layer over the South American pampa. Boundary-Layer Meteorol 96:317–335CrossRefGoogle Scholar
  38. Nepf HM (1999) Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour Res 35:479–489CrossRefGoogle Scholar
  39. Nordbo A, Launiainen S, Mammarella I, Leppäranta M, Huotari J, Ojala A, Vesala T (2011) Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J Geophys Res 116:D02119. doi:10.1029/2010JD014542 CrossRefGoogle Scholar
  40. Oleson KW, Dai Y, Bonan G, Bosilovich M, Dickinson R, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu G, Thornton P, Vertenstein M, Yang Z, Zeng X (2004) Technical description of the Community Land Model (CLM). NCAR Technical Note: NCAR/TN-461\(+\)STR. National Center for Atmospheric Research, Boulder, Colorado, USA, p 174Google Scholar
  41. Pahlow M, Parlange M, Porté-Agel F (2001) On Monin–Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorol 99:225–248CrossRefGoogle Scholar
  42. Panin GN, Nasonov AE, Foken Th, Lohse H (2006) On the parameterisation of evaporation and sensible heat exchange for shallow lakes. Theor Appl Climatol 85:123–129. doi:10.1007/s00704-005-0185-5 CrossRefGoogle Scholar
  43. Pip E (1979) Survey of the ecology of submerged aquatic macrophytes in central Canada. Aquat Bot 7:339–357CrossRefGoogle Scholar
  44. Plew DR, Cooper GG, Callaghan FM (2008) Turbulence-induced forces in a freshwater macrophyte canopy. Water Resour Res 44:W02414. doi:10.1029/2007WR006064 CrossRefGoogle Scholar
  45. Radomski P, Perleberg D (2012) Application of a versatile aquatic macrophyte integrity index for Minnesota lakes. Ecol Indic 20:252–268. doi:10.1016/j.ecolind.2012.02.012 CrossRefGoogle Scholar
  46. Roll HU (1948) Wassernahes windprofil und wellen auf dem wattenmeer. Ann Meteorol 1:139–151Google Scholar
  47. Rouse WR, Blanken PD, Bussières N, Oswald CJ, Schertzer WM, Spence C, Walker AE (2008) An investigation of the thermal and energy balance regimes of Great Slave and Great Bear Lakes. J Hydrometeorol 9:1318–1333. doi:10.1175/2008JHM977.1 CrossRefGoogle Scholar
  48. Samuelsson P, Tjernström M (2001) Mesoscale flow modification induced by land-lake surface temperature and roughness differences. J Geophys Res 106D:12419–12435CrossRefGoogle Scholar
  49. Samuelsson P, Kourzeneva E, Mironov D (2010) The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ Res 15:113–129Google Scholar
  50. Schertzer WM, Rouse WR, Blanken PD, Walker AE (2003) Over-lake meteorology and estimated bulk heat exchange of Great Slave Lake in 1998 and 1999. J Hydrometeorol 4:649–659CrossRefGoogle Scholar
  51. Sheppard PA, Tribble DT, Garratt JR (1972) Studies of turbulence in the surface layer over water (Lough Neagh). Part I. Instrumentation, programme, profiles. Q J R Meteorol Soc 98:627–641Google Scholar
  52. Sills DML, Brook JR, Levy I, Makar PA, Zhang J, Taylor PA (2011) Lake breezes in the southern Great Lakes region and their influence during BAQS-Met 2007. Atmos Chem Phys 11:7955–7973CrossRefGoogle Scholar
  53. Smith SD, Anderson RJ, Oost WA, Kraan C, Maat N, DeCosmo J, Katsaros KB, Davidson KL, Bumke K, Hasse L, Chadwick HM (1992) Sea-surface wind stress and drag coefficients: the HEXOS results. Boundary-Layer Meteorol 60:109–142. doi:10.1007/BF00122064 CrossRefGoogle Scholar
  54. Søndergaard M, Phillips G, Hellsten S, Kolada A, Ecke F, Mäemets H, Mjelde M, Azzella MM, Oggioni A (2013) Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia 704:165–177. doi:10.1007/s10750-012-1389-1 CrossRefGoogle Scholar
  55. Subin ZM, Riley WJ, Mironov DV (2012) An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CESM1. JAMES 4:M02001Google Scholar
  56. Törnblom K, Bergström H, Jahansson C (2007) Thermally driven mesoscale flows—simulations and measurements. Boreal Environ Res 12:623–641Google Scholar
  57. Vermaat JE, Santamaria L, Roos PJ (2000) Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Arch Hydrobiol 148:549–562Google Scholar
  58. Vesala T, Huotari J, Rannik Ü, Suni T, Smolander S, Sogachev A, Launiainen S, Ojala A (2006) Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. J Geophys Res 111:D11101. doi:10.1029/2005JD006365 CrossRefGoogle Scholar
  59. Vikers D, Mahrt L (1997) Fetch limited drag coefficients. Boundary-Layer Meteorol 85:53–79. doi:10.1023/A:1000472623187 CrossRefGoogle Scholar
  60. Wallsten M, Forsgren P (1989) The effects of increased water level on aquatic macrophytes. J Aquat Plant Manag 27:32–37Google Scholar
  61. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100CrossRefGoogle Scholar
  62. Wilson JD (2008) Monin–Obukhov functions for standard deviations of velocity. Boundary-Layer Meteorol 129:353–369. doi:10.1007/s10546-008-9319-5 CrossRefGoogle Scholar
  63. Zhao L, Jin J, Wang SY, Ek MB (2012) Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region. J Geophys Res 117:D09102. doi:10.1029/2011JD016979 CrossRefGoogle Scholar
  64. Zilitinkevich SS (1969) On the computation of the basic parameters of the interaction between the atmosphere and the ocean. Tellus 21:17–24CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Yale-NUIST Center on Atmospheric EnvironmentNanjing University of Information Science & TechnologyNanjingChina
  2. 2.School of Forestry and Environmental StudiesYale University New HavenUSA

Personalised recommendations