Skip to main content

Advertisement

Log in

Transfer Coefficients of Momentum, Heat and Water Vapour in the Atmospheric Surface Layer of a Large Freshwater Lake

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In studies of lake–atmosphere interactions, the fluxes of momentum, water vapour and sensible heat are often parametrized as being proportional to the differences in wind, humidity and air temperature between the water surface and a reference height above the surface. Here, the proportionality via transfer coefficients in these relationships was investigated with the eddy-covariance method at three sites within an eddy-covariance mesonet across Lake Taihu, China. The results indicate that the transfer coefficients decreased with increasing wind speed for weak winds and approached constant values for strong winds. The presence of submerged macrophytes reduced the momentum transfer (drag) coefficient significantly. At the two sites free of submerged macrophytes, the 10-m drag coefficients under neutral stability were 1.8 \((\pm \,0.4) \times \,10^{-3}\) and \(1.7\,(\pm \,0.3) \times \,10^{-3 }\) at the wind speed of \(9\,\text{ m } \text{ s }^{-1}\), which are 38 and 34 % greater than the prediction by the Garratt model for the marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ataktürk SS, Katsaros KB (1999) Wind stress and surface waves observed on Lake Washington. J Phys Oceanogr 29:633–650

    Google Scholar 

  • Barko JW, James WJ (1998) Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In: Jeppesen E et al (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp 197–214

  • Blanken PD, Rouse WR, Culf AD, Spence C, Boudreau LD, Jasper JN, Kochtubajda B, Schertzer WM, Marsh P, Verseghy D (2000) Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada. Water Resour Res 36:1069–1077

    Article  Google Scholar 

  • Blanken PD, Rouse WR, Schertzer WM (2003) Enhancement of evaporation from a large northern lake by the entrainment of warm, dry air. J Hydrometeorol 4:680–693

    Article  Google Scholar 

  • Blanken PD, Spence C, Hedstrom N, Lenters JD (2011) Evaporation from Lake Superior: 1. Physical controls and processes. J Great Lakes Res 37:707–716

    Article  Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370

    Article  Google Scholar 

  • Chen Y, Qin B, Teubner K, Dokulil MT (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25:445–453

    Article  Google Scholar 

  • Dale HM, Gillespie TJ (1977) The influence of submersed aquatic plants on temperature gradients in shallow water bodies. Can J Bot 55:2216–2225

    Article  Google Scholar 

  • Davidan IN, Lopatuhin LI, Rozhkov VA (1985) Waves in the world ocean (in Russian). Gidrometeoizdat, Leningrad, p 256

  • Deacon EL (1977) Gas transfer to and across an air–water interface. Tellus 29:363–374

    Article  Google Scholar 

  • Deng B, S Liu, W Xiao, W Wang, J Jin, X Lee (2013) Evaluation of the CLM4 lake model at a large and shallow freshwater lake. J Hydrometeorol 14:636–649

    Google Scholar 

  • Donelan MA, Dobson FW, Smith SD, Anderson RJ (1993) On the dependence of sea-surface roughness on wave development. J Phys Oceanogr 23:2143–2149. doi:10.1175/1520-0485(1993)023<2143:OTDOSS>2.0.CO;2

    Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397

    Article  Google Scholar 

  • Fairall CW, Bradley EF, Godfrey JS, Wick GA, Edson JB, Young GS (1996) Cool-skin and warm-layer effects on the sea surface temperature. J Geophys Res 101:1295–1308

    Google Scholar 

  • Foken T (2008) Micrometeorology. Springer, Berlin

    Google Scholar 

  • Gao ZQ, Wang Q, Zhou MY (2009) Wave-dependence of friction velocity, roughness length, and drag coefficient over coastal and open water surfaces by using three databases. Adv Atmos Sci 26:887–894

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge

    Google Scholar 

  • Geernaert GL, Larsen SE, Hansen F (1987) Measurements of the wind-stress, heat-flux and turbulence intensity during storm conditions over the north sea. J Geophys Res 92:13127–13139

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Larsen SE (1998) On the determination of the neutral drag coefficient in the convective boundary layer. Boundary-Layer Meteorol 86:257–278

    Article  Google Scholar 

  • Grachev AA, Bariteau L, Fairall CW, Hare JE, Helmig D, Hueber J, Lang EK (2011) Turbulent fluxes and transfer of trace gases from ship-based measurements during TexAQS 2006. J Geophys Res 116:D13110

    Article  Google Scholar 

  • Heikinheimo M, Kangas M, Tourula T, Venäläinen A, Tattari S (1999) Momentum and heat fluxes over lakes Tämnaren and Råksjö determined by the bulk-aerodynamic and eddy-correlation methods. Agric For Meteorol 98–99:521–534

    Article  Google Scholar 

  • Henderson-Sellers B (1986) Calculating the surface energy balance for lake and reservoir modeling: A review. Rev Geophys 24:625–649

    Article  Google Scholar 

  • Herb WR, Stefan HG (2005) Dynamics of vertical mixing in a shallow lake with submersed macrophytes. Water Resour Res 41:W02023. doi:10.1029/2003WR002613

    Article  Google Scholar 

  • Hinze JO (1975) Turbulence: an introduction to its mechanism and theory, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Hsieh CI, Katul G, Chi T (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772

    Article  Google Scholar 

  • James WF, Barko JW (2000) Sediment resuspension dynamics in canopy- and meadow-forming submersed macrophyte communities. Rep ERDC/EL SR-00-8, US Army Corps of Engineers, Vicksburg, Miss, USA, 38 pp

  • Johnson RK, Ostrofsky ML (2004) Effects of sediment nutrients and depth on small-scale spatial heterogeneity of submersed macrophyte communities in Lake Pleasant, Pennsylvania. Can J Fish Aquat Sci 61:1493–1502

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York

    Google Scholar 

  • Lee X, Massman W (2011) A perspective on thirty years of the Webb, Pearman and Leuning density corrections. Boundary-Layer Meteorol 139:37–59. doi:10.1007/s10546-010-9575-z

    Article  Google Scholar 

  • Lee X, Massman W, Law B (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht

    Google Scholar 

  • Liu H, Randerson JT, Lindfors J, Chapin III FS (2005) Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: an annual perspective. J Geophys Res 110:D13101. doi:10.1029/2004JD005158

  • Liu H, Zhang Y, Liu S, Jiang H, Sheng L, Williams QL (2009) Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississippi. J Geophys Res 114:D04110. doi:10.1029/2008JD010891

  • Losee RF, Wetzel RC (1993) Littoral flow rates within and around submersed macrophyte communities. Freshwater Biol 29:7–17

    Article  Google Scholar 

  • MacKay MD, Neale PJ, Arp CD, De Senerpont Domis LN, Fang X, Gal G, Jöhnk KD, Kirillin G, Lenters JD, Litchman E, MacIntyre S, Marsh P, Melack J, Mooij WM, Peeters F, Quesada A, Schladow SG, Schmid M, Spence C, Stokes SL (2009) Modeling lakes and reservoirs in the climate system. Limnol Oceanogr 54:2315–2329

    Article  Google Scholar 

  • Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84

    Article  Google Scholar 

  • Matt N, Kraan C, Oost WA (1991) The roughness of wind-waves. Boundary-Layer Meteorol 54:89–103. doi:10.1007/BF00119414

    Article  Google Scholar 

  • Moraes OLL (2000) Turbulence characteristics in the surface boundary layer over the South American pampa. Boundary-Layer Meteorol 96:317–335

    Article  Google Scholar 

  • Nepf HM (1999) Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour Res 35:479–489

    Article  Google Scholar 

  • Nordbo A, Launiainen S, Mammarella I, Leppäranta M, Huotari J, Ojala A, Vesala T (2011) Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J Geophys Res 116:D02119. doi:10.1029/2010JD014542

    Article  Google Scholar 

  • Oleson KW, Dai Y, Bonan G, Bosilovich M, Dickinson R, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu G, Thornton P, Vertenstein M, Yang Z, Zeng X (2004) Technical description of the Community Land Model (CLM). NCAR Technical Note: NCAR/TN-461\(+\)STR. National Center for Atmospheric Research, Boulder, Colorado, USA, p 174

  • Pahlow M, Parlange M, Porté-Agel F (2001) On Monin–Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorol 99:225–248

    Article  Google Scholar 

  • Panin GN, Nasonov AE, Foken Th, Lohse H (2006) On the parameterisation of evaporation and sensible heat exchange for shallow lakes. Theor Appl Climatol 85:123–129. doi:10.1007/s00704-005-0185-5

    Article  Google Scholar 

  • Pip E (1979) Survey of the ecology of submerged aquatic macrophytes in central Canada. Aquat Bot 7:339–357

    Article  Google Scholar 

  • Plew DR, Cooper GG, Callaghan FM (2008) Turbulence-induced forces in a freshwater macrophyte canopy. Water Resour Res 44:W02414. doi:10.1029/2007WR006064

    Article  Google Scholar 

  • Radomski P, Perleberg D (2012) Application of a versatile aquatic macrophyte integrity index for Minnesota lakes. Ecol Indic 20:252–268. doi:10.1016/j.ecolind.2012.02.012

    Article  Google Scholar 

  • Roll HU (1948) Wassernahes windprofil und wellen auf dem wattenmeer. Ann Meteorol 1:139–151

    Google Scholar 

  • Rouse WR, Blanken PD, Bussières N, Oswald CJ, Schertzer WM, Spence C, Walker AE (2008) An investigation of the thermal and energy balance regimes of Great Slave and Great Bear Lakes. J Hydrometeorol 9:1318–1333. doi:10.1175/2008JHM977.1

    Article  Google Scholar 

  • Samuelsson P, Tjernström M (2001) Mesoscale flow modification induced by land-lake surface temperature and roughness differences. J Geophys Res 106D:12419–12435

    Article  Google Scholar 

  • Samuelsson P, Kourzeneva E, Mironov D (2010) The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ Res 15:113–129

    Google Scholar 

  • Schertzer WM, Rouse WR, Blanken PD, Walker AE (2003) Over-lake meteorology and estimated bulk heat exchange of Great Slave Lake in 1998 and 1999. J Hydrometeorol 4:649–659

    Article  Google Scholar 

  • Sheppard PA, Tribble DT, Garratt JR (1972) Studies of turbulence in the surface layer over water (Lough Neagh). Part I. Instrumentation, programme, profiles. Q J R Meteorol Soc 98:627–641

    Google Scholar 

  • Sills DML, Brook JR, Levy I, Makar PA, Zhang J, Taylor PA (2011) Lake breezes in the southern Great Lakes region and their influence during BAQS-Met 2007. Atmos Chem Phys 11:7955–7973

    Article  Google Scholar 

  • Smith SD, Anderson RJ, Oost WA, Kraan C, Maat N, DeCosmo J, Katsaros KB, Davidson KL, Bumke K, Hasse L, Chadwick HM (1992) Sea-surface wind stress and drag coefficients: the HEXOS results. Boundary-Layer Meteorol 60:109–142. doi:10.1007/BF00122064

    Article  Google Scholar 

  • Søndergaard M, Phillips G, Hellsten S, Kolada A, Ecke F, Mäemets H, Mjelde M, Azzella MM, Oggioni A (2013) Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia 704:165–177. doi:10.1007/s10750-012-1389-1

    Article  Google Scholar 

  • Subin ZM, Riley WJ, Mironov DV (2012) An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CESM1. JAMES 4:M02001

    Google Scholar 

  • Törnblom K, Bergström H, Jahansson C (2007) Thermally driven mesoscale flows—simulations and measurements. Boreal Environ Res 12:623–641

    Google Scholar 

  • Vermaat JE, Santamaria L, Roos PJ (2000) Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Arch Hydrobiol 148:549–562

    Google Scholar 

  • Vesala T, Huotari J, Rannik Ü, Suni T, Smolander S, Sogachev A, Launiainen S, Ojala A (2006) Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. J Geophys Res 111:D11101. doi:10.1029/2005JD006365

    Article  Google Scholar 

  • Vikers D, Mahrt L (1997) Fetch limited drag coefficients. Boundary-Layer Meteorol 85:53–79. doi:10.1023/A:1000472623187

    Article  Google Scholar 

  • Wallsten M, Forsgren P (1989) The effects of increased water level on aquatic macrophytes. J Aquat Plant Manag 27:32–37

    Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100

    Article  Google Scholar 

  • Wilson JD (2008) Monin–Obukhov functions for standard deviations of velocity. Boundary-Layer Meteorol 129:353–369. doi:10.1007/s10546-008-9319-5

    Article  Google Scholar 

  • Zhao L, Jin J, Wang SY, Ek MB (2012) Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region. J Geophys Res 117:D09102. doi:10.1029/2011JD016979

    Article  Google Scholar 

  • Zilitinkevich SS (1969) On the computation of the basic parameters of the interaction between the atmosphere and the ocean. Tellus 21:17–24

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of Jiangsu Province, China (grant BK2011830), the Ministry of Education of China (grant PCSIRT), the Priority Academic Program Development of Jiangsu Higher Education Institutions (grant PAPD) and the National Natural Science Foundation of China (grant 41275024). We thank three reviewers whose constructive comments have improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xiao or Xuhui Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, W., Liu, S., Wang, W. et al. Transfer Coefficients of Momentum, Heat and Water Vapour in the Atmospheric Surface Layer of a Large Freshwater Lake. Boundary-Layer Meteorol 148, 479–494 (2013). https://doi.org/10.1007/s10546-013-9827-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9827-9

Keywords

Navigation