Boundary-Layer Meteorology

, Volume 148, Issue 1, pp 51–72 | Cite as

Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer

  • Anirban Garai
  • Eric Pardyjak
  • Gert-Jan Steeneveld
  • Jan Kleissl
Article

Abstract

Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared imagery and sonic anemometer measurements were obtained during the boundary layer late afternoon and sunset turbulence (BLLAST) experimental campaign. Temporal turbulence data in the surface-layer are then analyzed jointly with spatial surface-temperature imagery. The surface-temperature structures (identified using surface-temperature fluctuations) are strongly linked to atmospheric turbulence as manifested in several findings. The surface-temperature coherent structures move at an advection speed similar to the upper surface-layer or mixed-layer wind speed, with a decreasing trend with increase in stability. Also, with increasing instability the streamwise surface-temperature structure size decreases and the structures become more circular. The sequencing of surface- and air-temperature patterns is further examined through conditional averaging. Surface heating causes the initiation of warm ejection events followed by cold sweep events that result in surface cooling. The ejection events occur about 25 % of the time, but account for 60–70 % of the total sensible heat flux and cause fluctuations of up to 30 % in the ground heat flux. Cross-correlation analysis between air and surface temperature confirms the validity of a scalar footprint model.

Keywords

Atmospheric surface layer Convective boundary layer  Infra-red imagery Surface-layer plumes Surface temperature 

Supplementary material

10546_2013_9803_MOESM1_ESM.avi (23 mb)
Supplementary material 1 (avi 23591 KB)

References

  1. Balick LK, Jeffery CA, Henderson B (2003) Turbulence induced spatial variation of surface temperature in high resolution thermal IR satellite imagery. Proc SPIE 4879:221–230CrossRefGoogle Scholar
  2. Ballard JR, Smith JA, Koenig GG (2004) Towards a high temporal frequency grass canopy thermal IR model for background signatures. Proc SPIE 5431:251–259CrossRefGoogle Scholar
  3. Bastiaanssen WGM, Menenti M, Feddes RA, Holstag AAM (1998a) A remote sensing surface energy balance algorithm for land (SEBAL) 1 formulation. J Hydrol 212–213:198–212CrossRefGoogle Scholar
  4. Bastiaanssen WGM, Pelgrum H, Wang J, Ma J, Moreno JF, Roerink GJ, van der Wal T (1998b) A remote sensing surface energy balance algorithm for land (SEBAL) 2 validation. J Hydrol 212–213:213–229CrossRefGoogle Scholar
  5. Braaten DA, Shaw RH, Paw UKT (1993) Boundary-layer flow structures associated with particle reentrainment. Boundary-Layer Meteorol 65:255–272CrossRefGoogle Scholar
  6. Campbell GS, Norman JM (1998) An introduction to environmental biophysics. Springer, New York, 286 ppGoogle Scholar
  7. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, London, 510 ppGoogle Scholar
  8. Castellvi F (2004) Combining surface renewal analysis and similarity theory: a new approach for estimating sensible heat flux. Water Resour Res 40:W05201CrossRefGoogle Scholar
  9. Castellvi F, Snyder RL (2009) Combining the dissipation method and surface renewal analysis to estimate scalar fluxes from the time traces over rangeland grass near Ione (California). Hydrol Process 23:842–857CrossRefGoogle Scholar
  10. Castellvi F, Perez PJ, Ibanez M (2002) A method based on high-frequency temperature measurements to estimate the sensible heat flu avoiding the height dependence. Water Resour Res 38(6):1084CrossRefGoogle Scholar
  11. Christen A, Voogt JA (2009) Linking atmospheric turbulence and surface temperature fluctuations in a street canyon. Paper no. A3–6. The 7th international conference on urban climate, YokohomaGoogle Scholar
  12. Christen A, Voogt JA (2010) Inferring turbulent exchange process in an urban street canyon from high-frequency thermography. Paper no. J3A.3. 9th symposium on the urban environment, KeystoneGoogle Scholar
  13. Christen A, Meier F, Scherer D (2012) High-frequency fluctuations of surface temperatures in an urban environment. Theor Appl Climatol 108:301–324CrossRefGoogle Scholar
  14. Derksen DS (1974) Thermal infrared pictures and the mapping of microclimate. Neth J Agric Sci 22:119–132Google Scholar
  15. Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C (2006) Some aspects of the energy balance closure problem. Atmos Chem Phys 6:4395–4402CrossRefGoogle Scholar
  16. Gao W, Shaw RH, Paw UKT (1989) Observation of organized structure in turbulent flow within and above a forest canopy. Boundary-Layer Meteorol 47:349–377CrossRefGoogle Scholar
  17. Garai A, Kleissl J (2011) Air and surface temperature coupling in the convective atmospheric boundary layer. J Atmos Sci 68:2945–2954CrossRefGoogle Scholar
  18. Gurka R, Liberzon A, Hestroni G (2004) Detecting coherent patterns in a flume by using PIV and IR imaging techniques. Exp Fluids 37:230–236CrossRefGoogle Scholar
  19. Hestroni G, Rozenblit R (1994) Heat transfer to a liquid-solid mixture in a flume. Int J Multiphase Flow 20:671–689CrossRefGoogle Scholar
  20. Hestroni G, Kowalewski TA, Hu B, Mosyak A (2001) Tracking of coherent thermal structures on a heated wall by means of infrared thermography. Exp Fluids 30:286–294CrossRefGoogle Scholar
  21. Hommema SE, Adrian RJ (2003) Packet structure of surface eddies in the atmospheric boundary layer. Boundary-Layer Meteorol 106:147–170CrossRefGoogle Scholar
  22. Howard LN (1966) Convection at high Rayleigh number. In: Görtler H (ed) Proceedings of the 11th international congress on applied mechanics. Springer, San Diego, pp 1109–1115Google Scholar
  23. Hsieh C-I, Katul GG, Chi T (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772CrossRefGoogle Scholar
  24. Hunt JCR, Vrieling AJ, Nieuwstadt FTM, Fernando HJS (2003) The influence of the thermal diffusivity of the lower boundary on eddy motion in convection. J Fluid Mech 491:183–205CrossRefGoogle Scholar
  25. Jayalakshmy MS, Philip J (2010) Thermophysical properties of plant leaves and their influence on the environment temperature. Int J Thermophys 31:2295–2304CrossRefGoogle Scholar
  26. Kaimal JC, Businger JA (1970) Case studies of a convective plume and a dust devil. J Appl Meteorol 9:612–620CrossRefGoogle Scholar
  27. Kaimal JC, Wyngard JC, Haugen DA, Cote OR, Izumi Y (1976) Turbulence structure in the convective boundary layer. J Atmos Sci 33:2152–2169CrossRefGoogle Scholar
  28. Katul GG, Schieldge J, Hsieh C-I, Vidakovic B (1998) Skin temperature perturbations induced by surface layer turbulence above a grass surface. Water Resour Res 34:1265–1274CrossRefGoogle Scholar
  29. Katul GG, Konings AG, Porporato A (2011) Mean velocity profile in a sheared and thermally stratified atmospheric boundary layer. Phys Rev Lett 107:268502CrossRefGoogle Scholar
  30. Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol 99:207–224CrossRefGoogle Scholar
  31. Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140:243–262CrossRefGoogle Scholar
  32. Lothon M, Lohou F, Durand P, Couvreux Sr. F, Hartogensis OK, Legain D, Pardyjak E, Pino D, Reuder J, Vilà Guerau de Arellano J, Alexander D, Augustin P, Bazile E, Bezombes Y, Blay E, van de Boer A, Boichard JL, de Coster O, Cuxart J, Dabas A, Darbieu C, Deboudt K, Delbarre H, Derrien S, Faloona I, Flament P, Fourmentin M, Garai A, Gibert F, Gioli B, Graf A, Groebner J, Guichard F, Jonassen M, van de Kroonenberg A, Lenschow D, Martin S, Martinez D, Mastrorillo L, Moene A, Moulin E, Pietersen H, Piguet B, Pique E, Román-Cascón C, Said F, Sastre M, Seity Y, Steeneveld GJ, Toscano P, Traullé O, Tzanos D, Wacker S, Yagüe C (2012) The boundary layer late afternoon and sunset turbulence 2011 filed experiment. Paper no. 14B.1. 20th symposium on boundary layers and turbulence, BostonGoogle Scholar
  33. Oke TR (1987) Boundary layer climates. Methuen, London, 435 ppGoogle Scholar
  34. Paw UKT, Brunet Y, Collineau S, Shaw RH, Maitani T, Qiu J, Hipps L (1992) On coherent structures in turbulence above and within agricultural plant canopies. Agric For Meteorol 61:55–68CrossRefGoogle Scholar
  35. Paw UKT, Qiu J, Su H-B, Watanabe T, Brunet Y (1995) Surface renewal analysis: a new method to obtain scalar fluxes. Agric For Meteorol 74:119–137CrossRefGoogle Scholar
  36. Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78:351–382CrossRefGoogle Scholar
  37. Renno NO, Abreu VJ, Koch J, Smith PH, Hartogensis OK, De Bruin HAR, Burose D, Delory GT, Farrell WM, Watts CJ, Garatuza J, Parker M, Carswell A (2004) MATADOR 2002: a pilot experiment on convective plumes and dust devils. J Geophys Res 109:E07001CrossRefGoogle Scholar
  38. Schols JLJ (1984) The detection and measurement of turbulent structures in the atmospheric surface layer. Boundary-Layer Meteorol 29:39–58CrossRefGoogle Scholar
  39. Schols JLJ, Jansen AE, Krom JG (1985) Characteristics of turbulent structures in the unstable atmospheric surface layer. Boundary-Layer Meteorol 33:173–196CrossRefGoogle Scholar
  40. Snyder RL, Spano D, Paw UKT (1996) Surface renewal analysis for sensible and latent heat flux density. Boundary-Layer Meteorol 77:249–266CrossRefGoogle Scholar
  41. Spano D, Snyder RL, Duce P, Paw UKT (1997) Surface renewal analysis for sensible heat flux density using structure functions. Agric For Meteorol 86:259–271CrossRefGoogle Scholar
  42. Spano D, Snyder RL, Duce P, Paw UKT (2000) Estimating sensible and latent heat flux densities from gravepine canopies using surface renewal. Agric For Meteorol 104:171–183CrossRefGoogle Scholar
  43. Sparrow EM, Husar RB, Goldstein RJ (1970) Observations and other characteristics of thermals. J Fluid Mech 41:793–800CrossRefGoogle Scholar
  44. Tiselj I, Bergant R, Makov B, Bajsić I, Hestroni G (2001) DNS of turbulent heat transfer in channel flow with heat conduction in the solid wall. J Heat Transf 123:849–857CrossRefGoogle Scholar
  45. Townsend AA (1959) Temperature fluctuation over a heated horizontal surface. Fluid Mech 5:209–241CrossRefGoogle Scholar
  46. Vogt R (2008) Visualisation of turbulent exchange using a thermal camera. Paper no. 8B.1. 18th symposium on boundary layer and turbulence, StockholmGoogle Scholar
  47. Wilczak JM, Businger JA (1983) Thermally indirect motions in the convective atmospheric boundary layer. J Atmos Sci 40:343–358Google Scholar
  48. Wilczak JM, Tillman JE (1980) The three-dimensional structure of convection in the atmospheric surface layer. J Atmos Sci 37:2424–2443CrossRefGoogle Scholar
  49. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150CrossRefGoogle Scholar
  50. Wyngaard JC, Cote OR, Izumi Y (1971) Local free convection, similarity and the budgets of shear stress and heat flux. J Atmos Sci 28:1171–1182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Anirban Garai
    • 1
  • Eric Pardyjak
    • 2
  • Gert-Jan Steeneveld
    • 3
  • Jan Kleissl
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA
  3. 3.Meteorology and Air QualityWageningen UniversityWageningenThe Netherlands

Personalised recommendations