Skip to main content

Similarity Scaling Over a Steep Alpine Slope

Abstract

In this study, we investigate the validity of similarity scaling over a steep mountain slope (30–41\(^\circ \)). The results are based on eddy-covariance data collected during the Slope Experiment near La Fouly (SELF-2010); a field campaign conducted in a narrow valley of the Swiss Alps during summer 2010. The turbulent fluxes of heat and momentum are found to vary significantly with height in the first few metres above the inclined surface. These variations exceed by an order of magnitude the well-accepted maximum 10 % required for the applicability of Monin–Obukhov similarity theory in the surface layer. This could be due to a surface layer that is too thin to be detected or to the presence of advective fluxes. It is shown that local scaling can be a useful tool in these cases when surface-layer theory breaks down. Under convective conditions and after removing the effects of self-correlation, the normalized standard deviations of slope-normal wind velocity, temperature and humidity scale relatively well with \(z/\varLambda \), where \(z\) is the measurement height and \(\varLambda (z)\) the local Obukhov length. However, the horizontal velocity fluctuations are not correlated with \(z/\varLambda \) under all stability regimes. The non-dimensional gradients of wind velocity and temperature are also investigated. For those, the local scaling appears inappropriate, particularly at night when shallow drainage flows prevail and lead to negative wind-speed gradients close to the surface.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. Unless specified, all heights reported are normal to the surface.

References

  • Al-Jiboori MH, Xu YM, Qian YF (2002) Local similarity relationships in the urban boundary layer. Boundary-Layer Meteorol 102:63–82

    Article  Google Scholar 

  • Andreas EL, Hill RJ, Gosz JR, Moore DI, Otto WD, Sarma AD (1998) Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity. Boundary-Layer Meteorol 86:379–408

    Article  Google Scholar 

  • Banta RM (1985) Late-morning jump in TKE in the mixed layer over a mountain basin. J Atmos Sci 42:407–411

    Article  Google Scholar 

  • Brooks IM, Rogers DP (2000) Aircraft observations of the mean and turbulent structure of a shallow boundary layer over the Persian Gulf. Boundary-Layer Meteorol 95:189–210

    Article  Google Scholar 

  • Brutsaert W (2005) Hydrology: an introduction. Cambridge University Press, Cambridge, UK, 605 pp

  • Brutsaert W, Kustas WP (1987) Surface water vapor and momentum fluxes under unstable conditions from a rugged-complex area. J Atmos Sci 44:421–431

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Cheng YG, Parlange MB, Brutsaert W (2005) Pathology of Monin–Obukhov similarity in the stable boundary layer. J Geophys Res-Atmos 110:D06101. doi:10.1029/2004jd004923

  • de Franceschi M, Zardi D, Tagliazucca M, Tampieri F (2009) Analysis of second-order moments in surface layer turbulence in an Alpine valley. Q J R Meteorol Soc 135:1750–1765

    Article  Google Scholar 

  • Drennan WM, Kahma KK, Donelan MA (1999) On momentum flux and velocity spectra over waves. Boundary-Layer Meteorol 92:489–515

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux–profile relationships. Boundary-Layer Meteorol 7:363–372

    Article  Google Scholar 

  • Foken T (2006) 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol 119:431–447

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, UK, 316 pp

  • Geissbuhler P, Siegwolf R, Eugster W (2000) Eddy covariance measurements on mountain slopes: the advantage of surface-normal sensor orientation over a vertical set-up. Boundary-Layer Meteorol 96:371–392

    Article  Google Scholar 

  • Grachev A, Andreas E, Fairall C, Guest P, Persson P (2007) On the turbulent Prandtl number in the stable atmospheric boundary layer. Boundary-Layer Meteorol 125:329–341

    Article  Google Scholar 

  • Grisogono B, Kraljevic L, Jericevic A (2007) Notes and correspondence—the low-level katabatic jet height versus Monin–Obukhov height. Q J R Meteorol Soc 133:2133–2136

    Article  Google Scholar 

  • Grubisic V, Doyle JD, Kuettner J, Mobbs S, Smith RB, Whiteman CD, Dirks R, Czyzyk S, Cohn SA, Vosper S, Weissmann M, Haimov S, De Wekker SFJ, Pan LL, Chow FK (2008) The terrain-induced rotor experiment—a field campaign overview including observational highlights. Bull Am Meteorol Soc 89:1513–1533

    Article  Google Scholar 

  • Hicks BB (1981) An examination of turbulence statistics in the surface boundary layer. Boundary-Layer Meteorol 21:389–402

    Article  Google Scholar 

  • Högström U, Bergström H, Alexandersson H (1982) Turbulence characteristics in a near neutrally stratified urban atmosphere. Boundary-Layer Meteorol 23:449–472

    Article  Google Scholar 

  • Holtslag AAM, Nieuwstadt FTM (1986) Scaling the atmospheric boundary-layer. Boundary-Layer Meteorol 36:201–209

    Article  Google Scholar 

  • Kader BA, Yaglom AM (1990) Mean fields and fluctuation moments in unstably stratified turbulent boundary-layers. J Fluid Mech 212:637–662

    Article  Google Scholar 

  • Khanna S, Brasseur JG (1997) Analysis of Monin–Obukhov similarity from large-eddy simulation. J Fluid Mech 345:251–286

    Article  Google Scholar 

  • Klipp CL, Mahrt L (2004) Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J R Meteorol Soc 130:2087–2103

    Article  Google Scholar 

  • Krishnan P, Kunhikrishnan PK (2002) Some characteristics of atmospheric surface layer over a tropical inland region during southwest monsoon period. Atmos Res 62:111–124

    Article  Google Scholar 

  • Lenschow DH, Wyngaard JC, Pennell WT (1980) Mean-field and 2nd-moment budgets in a baroclinic, convective boundary-layer. J Atmos Sci 37:1313–1326

    Article  Google Scholar 

  • Lenschow DH, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes and other turbulence statistics. J Atmos Ocean Technol 11:661–673

    Article  Google Scholar 

  • Mahrt L (1998) Stratified atmospheric boundary layers and breakdown of models. Theor Comput Fluid Dyn 11:263–279

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90:375–396

    Article  Google Scholar 

  • Marques EP, Sa LDA, Karam HA, Alvala RCS, Souza A, Pereira MMR (2008) Atmospheric surface layer characteristics of turbulence above the Pantanal wetland regarding the similarity theory. Agric For Meteorol 148:883–892

    Article  Google Scholar 

  • Martins CA, Moraes OLL, Acevedo OC, Degrazia GA (2009) Turbulence intensity parameters over a very complex terrain. Boundary-Layer Meteorol 133:35–45

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the ground layer of the atmosphere. Trudy Inst Theor Geofiz An SSSR 151:163–187 in Russian

    Google Scholar 

  • Nadeau DF, Pardyjak ER, Higgins CW, Huwald H, Parlange MB (2012) Flow during the evening transition over steep alpine slopes. Q J R Meteorol Soc. doi:10.1002/qJ1985

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary-layer. J Atmos Sci 41:2202–2216

    Article  Google Scholar 

  • Nordbo A, Järvi L, Haapanala S, Moilanen J, Vesala T (2012) Intra-city variation in urban morphology and turbulence structure in Helsinki, Finland. Boundary-Layer Meteorol. doi:10.1007/s10546-012-9773-Y

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence. Models and methods for engineering applications. Wiley, New York, 397 pp

  • Panofsky H, Tennekes H, Lenschow D, Wyngaard J (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Boundary-Layer Meteorol 11:355–361

    Article  Google Scholar 

  • Park MS, Park SU (2006) Effects of topographical slope angle and atmospheric stratification on surface-layer turbulence. Boundary-Layer Meteorol 118:613–633

    Article  Google Scholar 

  • Perlik M, Messerli P, Batzing W (2001) Towns in the Alps: urbanization processes, economic structure, and demarcation of European functional urban areas (EFUAs) in the Alps. Mt Res Dev 21:243–252

    Article  Google Scholar 

  • Ramana MV, Krishnan P, Kunhikrishnan PK (2004) Surface boundary-layer characteristics over a tropical inland station: seasonal features. Boundary-Layer Meteorol 111:153–175

    Article  Google Scholar 

  • Rannik Ü (1998) On the surface layer similarity at a complex forest site. J Geophys Res-Atmos 103:8685–8697

    Google Scholar 

  • Rotach MW, Zardi D (2007) On the boundary-layer structure over highly complex terrain: key findings from MAP. Q J R Meteorol Soc 133:937–948

    Article  Google Scholar 

  • Rotach MW, Andretta M, Calanca P, Weigel AP, Weiss A (2008) Boundary layer characteristics and turbulent exchange mechanisms in highly complex terrain. Acta Geophys 56:194–219

    Article  Google Scholar 

  • Shao YP, Hacker JM (1990) Local similarity relationships in a horizontally inhomogeneous boundary-layer. Boundary-Layer Meteorol 52:17–40

    Article  Google Scholar 

  • Sorbjan Z (1988) Local similarity in the convective boundary layer. Boundary-Layer Meteorol 45:237–250

    Article  Google Scholar 

  • Tamagawa I (1996) Turbulent characteristics and bulk transfer coefficients over the desert in the HEIFE area. Boundary-Layer Meteorol 77:1–20

    Article  Google Scholar 

  • Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, New York, 355 pp

  • Wilczak J, Oncley S, Stage S (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150

    Article  Google Scholar 

  • Wood CR, Lacser A, Barlow JF, Padhra A, Belcher SE, Nemitz E, Helfter C, Famulari D, Grimmond CSB (2010) Turbulent flow at 190 m height above London during 2006–2008: a climatology and the applicability of similarity theory. Boundary-Layer Meteorol 137:77–96

    Article  Google Scholar 

  • Xu Y, Chaofu Z, Zhongkai LI, Wei Z (1997) Turbulent structure and local similarity in the tower layer over the Nanjing area. Boundary-Layer Meteorol 82:1–21

    Article  Google Scholar 

  • Yusup YB, Daud WRW, Zaharim A, Talib MZM (2008) Structure of the atmospheric surface layer over an industrialized equatorial area. Atmos Res 90:70–77

    Article  Google Scholar 

  • Zhang HS, Chen JY, Park SU (2001) Turbulence structure in unstable conditions over various surfaces. Boundary-Layer Meteorol 100:243–261

    Article  Google Scholar 

  • Zhong L, Ma Y, Su Z, Lu L, Ma W, Lu Y (2009) Land–atmosphere energy transfer and surface boundary layer characteristics in the Rongbu Valley on the northern slope of Mt. Everest. Arct Antarct Alp Res 41:396–405

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all the collaborators at the Laboratory of Environmental Fluid Mechanics at EPFL who helped with the field campaign, and in particular to Hendrik Huwald. The authors would also like to thank Alain Rousseau from the Institut National de la Recherche Scientifique. This work was funded by the Swiss National Foundation under grant 200021-120238 and by the Office of Naval Research Program Award # N00014-11-1-0709, Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Nadeau.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nadeau, D.F., Pardyjak, E.R., Higgins, C.W. et al. Similarity Scaling Over a Steep Alpine Slope. Boundary-Layer Meteorol 147, 401–419 (2013). https://doi.org/10.1007/s10546-012-9787-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9787-5

Keywords

  • Drainage flow
  • Downslope flow
  • Flux divergence
  • Flux–gradient relationships
  • Flux–variance relationships
  • Local similarity
  • Mountain winds
  • Surface layer