Skip to main content
Log in

Convective Boundary-Layer Entrainment: Short Review and Progress using Doppler Lidar

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The entrainment of air from the free atmosphere into the convective boundary layer is reviewed and further investigated using observations from a 2 μm Doppler lidar. It is possible to observe different individual processes entraining air into the turbulent layer, which develop with varying stability of the free atmosphere. These different processes are attended by different entrainment-zone thicknesses and entrainment velocities. Four classes of entrainment parametrizations, which describe relationships between the fundamental parameters of the process, are examined. Existing relationships between entrainment-zone thickness and entrainment velocity are basically confirmed using as scaling parameters boundary-layer height and convective velocity. An increase in the correlation coefficient between stability parameters based on the stratification of the free atmosphere and entrainment velocity (and entrainment-zone thickness respectively) up to 200% was possible using more suitable length and velocity scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angevine W (2008) Transitional, entraining, cloudy, and coastal boundary layers. Acta Geophys 56(1): 2–20

    Article  Google Scholar 

  • Angevine W, White A, Avery S (1994) Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Boundary-Layer Meteorol 68: 375–385

    Article  Google Scholar 

  • Asimakopoulos D, Helmis C, Michopoulos J (2004) Evaluation of sodar methods for the determination of the atmospheric boundary layer mixing height. Meteorol Atmos Phys 85: 85–92

    Article  Google Scholar 

  • Baines W (1975) Entrainment by a plume or jet at a density interface. J Fluid Mech 68: 309–320

    Article  Google Scholar 

  • Barthlott C, Kalthoff N, Fiedler F (2003) Influence of high-frequency radiation on turbulence measurements on a 200 m tower. Meteorol Z 12(2): 67–71

    Article  Google Scholar 

  • Batchvarova E, Cai X, Gryning SE, Steyn D (1999) Modelling internal boundary-layer development in a region with a complex coastline. Boundary-Layer Meteorol 90: 1–20

    Article  Google Scholar 

  • Beyrich F, Gryning SE (1998) Estimation of the entrainment zone depth in a shallow convective boundary layer from sodar data. J Appl Meteorol 37: 255–268

    Article  Google Scholar 

  • Boers R (1989) A parameterization of the depth of the entraiment zone. J Appl Meteorol 28: 107–111

    Article  Google Scholar 

  • Boers R, Eloranta E (1986) Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer. Boundary-Layer Meteorol 34: 357–375

    Article  Google Scholar 

  • Boers R, Eloranta E, Coulter R (1984) Lidar observations of mixed layer dynamics: tests of parameterized entrainment models. J Clim Appl Meteorol 23: 247–266

    Article  Google Scholar 

  • Brooks I (2003) Finding boundary layer top: application of a wavelet covariance transform to lidar backscatter profiles. J Atmos Ocean Technol 20: 1092–1105

    Article  Google Scholar 

  • Browning K, Wexler R (1968) The determination of kinematic properties of a wind field using doppler radar. J Appl Meteorol 7: 105–113

    Article  Google Scholar 

  • Browning K, Blyth A, Clark P, Corsmeier U, Morcrette C, Agnew J, Ballard S, Bamber D, Barthlott C, Bennett L, Beswick K, Bitter M, Bozier K, Brooks B, Collier C, Davies F, Deny B, Dixon M, Feuerle T, Forbes R, Gaffard C, Gray M, Hankers R, Hewison T, Kalthoff N, Khodayar S, Kohler M, Kottmeier C, Kraut S, Kunz M, Ladd D, Lean H, Lenfant J, Li Z, Marsham J, McGregor J, Mobbs S, Nicol J, Norton E, Parker D, Perry F, Ramatschi M, Ricketts H, Roberts N, Russell A, Schulz H, Slack E, Vaughan G, Waight J, Watson R, Webb A, Wareing D, Wieser A (2007) The convective storm initiation project. Bull Am Meteorol Soc 88(12): 1939–1955

    Article  Google Scholar 

  • Calhoun R, Wieser A, Princevac M, Kottmeier C (2005) Comparison of lidar data with tower, profiler, radiosonde, and tethersonde data. In: European Geosciences Union General Assembly 2005, Vienna, Austria, 24–29 April 2005

  • Canut G, Lothon M, Said F, Lohou F (2010) Observation of entrainment at the interface between monsoon flow and the saharan air layer. Q J Roy Meteorol Soc 136: 34–46

    Article  Google Scholar 

  • Carruthers D, Hunt J (1986) Velocity fluctuations near an interface between a turbulent region and a stably stratified layer. J Fluid Mech 165: 475–501

    Article  Google Scholar 

  • Carruthers D, Moeng CH (1987) Waves in the overlying inversion of the convective boundary layer. J Atmos Sci 44(14): 1801–1808

    Article  Google Scholar 

  • Caughey S, Palmer S (1979) Some aspects of turbulence structure through the depth of the convective boundary layer. Q J Roy Meteorol Soc 105: 811–827

    Article  Google Scholar 

  • Cohn S, Angevine W (2000) Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J Appl Meteorol 39: 1233–1247

    Article  Google Scholar 

  • Conzemius R, Fedorovich E (2006) Dynamics of sheared convective boundary layer entrainment. Part I: methodological background and large-eddy simulations. J Atmos Sci 63: 1151–1178

    Article  Google Scholar 

  • Couvreux F, Guichard F, Masson V, Redelsperger JL (2007) Negative water vapour skewness and dry tongues in the convective boundary layer: observations and large-eddy simulation budget analysis. Boundary-Layer Meteorol 123: 269–294

    Article  Google Scholar 

  • Crapper P, Linden P (1974) The structure of turbulent density interfaces. J Fluid Mech 65(1): 45–63

    Article  Google Scholar 

  • Davis K, Lenschow D, Oncley S, Kiemle C, Ehret G, Giez A, Mann J (1997) Role of entrainment in surface–atmosphere interactions over the boreal forest. J Geophys Res 102(D24): 29219–29230

    Article  Google Scholar 

  • Davis K, Gamage N, Hagelberg C, Kiemle C, Lenschow D, Sullivan P (2000) An objective method for deriving atmospheric structure from airborne lidar observations. J Atmos Ocean Technol 17: 1455–1468

    Article  Google Scholar 

  • Deardorff J (1970) Convective velocity and temperature scales for the unstable planetary boundary layer and for rayleigh convection. J Atmos Sci 27: 1211–1213

    Article  Google Scholar 

  • Deardorff J (1979) Prediction of convective mixed-layer entrainment for realistic capping-inversion structure. J Atmos Sci 36: 424–436

    Article  Google Scholar 

  • Deardorff J (1983) A multi-limit mixed-layer entrainment formulation. J Phys Oceanogr 13: 988–1002

    Article  Google Scholar 

  • Deardorff J, Willis G, Stockton B (1980) Laboratory studies of the entrainment zone of a convectively mixed layer. J Fluid Mech 100: 41–64

    Article  Google Scholar 

  • Dohan K, Sutherland B (2003) Internal waves generated from a turbulent mixed region. Phys Fluids 15(2): 488–498

    Article  Google Scholar 

  • Driedonks A (1982) Models and observations of the growth of the atmospheric boundary layer. Boundary-Layer Meteorol 23: 283–306

    Article  Google Scholar 

  • Fedorovich E, Conzemius R, Mironov D (2004) Convective entrainment into a shear-free, linearly stratified atmosphere: bulk models reevaluated through large eddy simulations. J Atmos Sci 61: 281–295

    Article  Google Scholar 

  • Fernando H (1991) Turbulent mixing in stratified fluids. Annu Rev Fluid Mech 23: 455–493

    Article  Google Scholar 

  • Fernando H, Hunt J (1996) Some aspects of turbulence and mixing in stably stratified layers. Dyn Atmos Oceans 23: 35–62

    Article  Google Scholar 

  • Fernando H, Hunt J (1997) Turbulence, waves and mixing at shear-free density interfaces. Part 1: a theoretical model. J Fluid Mech 347: 197–234

    Article  Google Scholar 

  • Flamant C, Pelon J, Flamant P, Durand P (1997) Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Boundary-Layer Meteorol 83: 247–284

    Article  Google Scholar 

  • Frehlich R (2001) Estimation of velocity error for Doppler lidar measurements. J Atmos Ocean Technol 18: 1628–1639

    Article  Google Scholar 

  • Gryning SE, Batchvarova E (1994) Parametrization of the depth of the entrainment zone above the daytime boundary layer. Q J Roy Meteorol Soc 120: 47–58

    Article  Google Scholar 

  • Haegeli P, Steyn D, Strawbridge K (2000) Spatial and temporal variability of mixed-layer depth and entrainment-zone thickness. Boundary-Layer Meteorol 97: 47–71

    Article  Google Scholar 

  • Hannoun I, List EJ (1988) Turbulent mixing at a shear-free density interface. J Fluid Mech 189: 211–234

    Article  Google Scholar 

  • Hunt J (1998) Eddy Dynamics and kinematics of convective turbulence, vol 513: bouyant convection in geophysical flows. Kluwer, Dordrecht, pp, pp 41–82

    Google Scholar 

  • Kalthoff N, Fiebig-Wittmaack M, Meixner C, Kohler M, Uriarte M, Bischoff-Gaux I, Gonzales E (2006) The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the andes. J Arid Environ 65: 420–443

    Article  Google Scholar 

  • Kalthoff N, Adler B, Barthlott C, Corsmeier U, Mobbs S, Crewell S, Träumner K, Kottmeier C, Wieser A, Smith V, Girolamo PD (2009) The impact of convergence zones on the initiation of deep convection: a case study from cops. Atmos Res 93: 680–694

    Article  Google Scholar 

  • Kim SW, Park SU, Moeng CH (2003) Entrainment processes in the convective boundary layer with varying wind shear. Boundary-Layer Meteorol 108: 221–245

    Article  Google Scholar 

  • Kim SW, Park SU, Pino D, de Arellano JVG (2006) Parameterization of entrainment in a sheared convective boundary layer using a first-order jump model. Boundary-Layer Meteorol 120: 455–475

    Article  Google Scholar 

  • Kottmeier C, Kalthoff N, Barthlott C, Corsmeier U, van Baelen J, Behrendt A, Behrendt R, Blyth A, Coulter R, Crewell S, di Girolamo P, Dorninger M, Flamant C, Foken T, Hagen M, Hauck C, Höller H, Konow H, Kunz M, Mahlke H, Mobbs S, Richard E, Steinacker R, Weckwerth T, Wieser A, Wulfmeyer V (2008) Mechanisms initiating deep convection over complex terrain during cops. Meteorol Z 17(6): 931–948

    Article  Google Scholar 

  • Lammert A, Bösenberg J (2006) Determination of the convective boundary-layer height with laser remote sensing. Boundary-Layer Meteorol 119: 159–170

    Article  Google Scholar 

  • Lenschow D, Stankov B (1986) Length scales in the convective boundary layer. J Atmos Sci 43(12): 1198–1209

    Article  Google Scholar 

  • Lenschow D, Wyngaard J, Pennell W (1980) Mean field and second momentum budgets in a baroclinic convective boundary layer. J Atmos Sci 37: 1313–1326

    Article  Google Scholar 

  • Lenschow D, Krummel P, Siems S (1999) Measuring entrainment, divergence, and vorticity on the mesoscale from aircraft. J Atmos Ocean Technol 16: 1384–1400

    Article  Google Scholar 

  • Lenschow D, Wulfmeyer V, Senff C (2000a) Measuring second- through fourth-order moments in noisy data. J Atmos Ocean Technol 17: 1330–1347

    Article  Google Scholar 

  • Lenschow D, Zhou M, Zeng X, Chen L, Xu X (2000b) Measurements of fine-scale structure at the top of marine stratocumulus. Boundary-Layer Meteorol 97: 331–357

    Article  Google Scholar 

  • Linden P (1973) The interaction of a vortex ring with a sharp density interface: a model for turbulent entrainment. J Fluid Mech 60: 467–480

    Article  Google Scholar 

  • Lothon M, Lenschow D, Mayor S (2006) Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Boundary-Layer Meteorol 121: 521–536

    Article  Google Scholar 

  • Lothon M, Lenschow D, Mayor S (2009) Doppler lidar measurements of vertical velocity spectra in the convective planetary boundary layer. Boundary-Layer Meteorol 132(2): 205–226

    Article  Google Scholar 

  • McGrath J, Fernando H, Hunt J (1997) Turbulence, waves and mixing at shear-free density interfaces. Part 2. Laboratory experiments. J Fluid Mech 347: 235–261

    Article  Google Scholar 

  • Melfi S, Spinhirne J, Chou SH, Palm S (1985) Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J Clim Appl Meteorol 24: 806–821

    Article  Google Scholar 

  • Moeng CH (1998) Stratocumulus-topped atmospheric planetary boundary layer. In: Plate E, Fedorovich E, Viegas D, Wyngaard J (eds) Buoyant convection in geophysical flows, 1st edn. Kluwer, Dordrecht, p 491

    Google Scholar 

  • Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the atmosphere near the ground. Tr Akad Nauk SSSR Geofiz Inst 24(151): 1963–1987

    Google Scholar 

  • Nelson E, Stull R, Eloranta E (1989) A progostic relationsship for entrainment zone thickness. J Appl Meteorol 28: 885–903

    Article  Google Scholar 

  • Nicholls S, Turton J (1986) An observation study of the structure of stratiform cloud sheets: Part II. Entrainment. Q J Roy Meteorol Soc 112: 461–480

    Article  Google Scholar 

  • Pino D, de Arellano JVG, Duynkerke P (2003) The contribution of shear to the evolution of a convective boundary layer. J Atmos Sci 60: 1913–1926

    Article  Google Scholar 

  • Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34: 1001–1027

    Article  Google Scholar 

  • Sorbjan Z (1990) Similarity scales and universal profiles of statistical moment in the convective boundary layer. J Appl Meteorol 29: 762–775

    Article  Google Scholar 

  • Steyn D, Baldi M, Hoff R (1999) The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J Atmos Ocean Technol 16: 953–959

    Article  Google Scholar 

  • Strang E, Fernando H (2001) Entrainment and mixing in stratified shear flows. J Atmos Sci 428: 349–386

    Google Scholar 

  • Stull R (1973) Inversion rise model based on penetrative convection. J Atmos Sci 30: 1092–1099

    Article  Google Scholar 

  • Sullivan P, Moeng C, Stevens B, Lenschow D, Mayor S (1998) Structure of the entrainment zone capping the convective atmospheric boundary layer. J Atmos Sci 55: 3042–3064

    Article  Google Scholar 

  • Sun J, Wang Y (2008) Effect of the entrainment flux ratio on the relationship between entrainment rate and convective Richardson number. Boundary-Layer Meteorol 126: 237–247

    Article  Google Scholar 

  • Tennekes H (1973) A model for the dynamics of the inversion above a convective boundary layer. J Atmos Sci 30: 558–567

    Article  Google Scholar 

  • Tennekes H, Driedonks A (1981) Basic entrainment equations for the atmospheric boundary layer. Boundary-Layer Meteorol 20: 515–531

    Article  Google Scholar 

  • Tucker S, Brewer WA, Banta R, Senff C, Sandberg S, Law D, Weickmann A, Hardesty R (2009) Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J Atmos Ocean Technol 26: 673–688

    Article  Google Scholar 

  • Turner J (1986) Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J Fluid Mech 173: 431–471

    Article  Google Scholar 

  • Van Zanten M, Duynkerke P, Cuijpers J (1999) Entrainment parameterization in convective boundary layers. J Atmos Sci 56(6): 813–828

    Article  Google Scholar 

  • Wulfmeyer V, Behrendt A, Bauer H, Kottmeier C, Corsmeier U, Blyth A, Craig G, Schumann U, Hagen M, Crewell S, Girolamo PD, Flamant C, Miller M, Montani A, Mobbs S, Richard E, Rotach M, Arpagaus M, Russchenberg H, Schlüssel P, König M, Gärtner V, Steinacker R, Dorninger M, Turner D, Weckwerth T, Hense A, Simmer C (2008) Research campaign: the convective and orographically induced precipitation study. Bull Am Meteorol Soc 89: 1477–1486

    Article  Google Scholar 

  • Yi C, Davis K, Berger B, Bakwin P (2001) Long-term observations of the dynamics of the continental planetary boundary layer. J Atmos Sci 58: 1288–1299

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Träumner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Träumner, K., Kottmeier, C., Corsmeier, U. et al. Convective Boundary-Layer Entrainment: Short Review and Progress using Doppler Lidar. Boundary-Layer Meteorol 141, 369–391 (2011). https://doi.org/10.1007/s10546-011-9657-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-011-9657-6

Keywords

Navigation