Advertisement

Boundary-Layer Meteorology

, Volume 143, Issue 1, pp 143–158 | Cite as

Study of Mesobeta Basin Flows by Remote Sensing

  • J. Cuxart
  • J. Cunillera
  • M. A. Jiménez
  • D. Martínez
  • F. Molinos
  • J. L. Palau
Article

Abstract

If no well-defined synoptic pressure gradients exist over a basin, flows can develop at a variety of scales, the main generators of circulations being spatial thermal differences. These dynamics are studied for the eastern Ebro basin, at the north-eastern part of the Iberian Peninsula, almost isolated from the surrounding areas by mountain ranges. The main tool for the study is the new RASS-Sodar by Scintec, the WindRASS, which combines sound and radio waves to provide profiles of wind and virtual temperature up to 360 m above the ground in the present configuration. One year of operation shows that low-level jets are found routinely, their maximum speed being at a height below 500 m above ground level. The jets are from a constant direction for several hours over the whole observed column, with rapid transitions between these periods. They allow for efficient heat transport at the basin scale and are good producers of vertical mixing due to the strong wind shear. In summer the irrigated plain has larger thermal contrast with the dry slopes, and the winds are stronger than in winter, when katabatic flows can develop at night and usually radiation fog appears and may last for days.

Keywords

Basin flows Low-level jet Satellite-derived surface temperatures Stable boundary layer WindRASS Unmanned aerial vehicle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bain CL, Parker DJ, Taylor CM, Kergoat L, Guichard F (2010) Observations of the nocturnal boundary layer associated with the West African Monsoon. Mon Weather Rev 138: 3142–3156. doi: 10.1175/2010MWR3287.1 CrossRefGoogle Scholar
  2. Banta RM, Newsom RK, Lundquist JK, Pichugina YL, Coulter RL, Mahrt L (2002) Nocturnal low-level jet characteristics over Kansas during CASES-99. Boundary-Layer Meteorol 105: 221–252. doi: 10.1023/A:1019992330866 CrossRefGoogle Scholar
  3. Baas P, Bosveld FC, Baltink HK, Holtslag AAM (2009) A climatology of nocturnal low-level jets at Cabauw. J Appl Meteorol Climatol 48: 1627–1642. doi: 10.1175/2009JAMC1965.1 CrossRefGoogle Scholar
  4. Beyrich F, Mengelkamp H-T (2006) Evaporation over a heterogeneous land surface: EVA-GRIPS and the LITFASS-2003 experiment. An overview. Boundary-Layer Meteorol 121: 5–32. doi: 10.1007/s10546-006-9079-z CrossRefGoogle Scholar
  5. Coll C, Caselles V, Galve JM, Valor E, Niclos R, Sanchez JM, Rivas R (2005) Ground measurements for the validation of land surface temperatures derive from AATSR and MODIS data. Remote Sens Environ 97: 288–300. doi: 10.1016/j.rse.2005.05.007 CrossRefGoogle Scholar
  6. Conangla L, Cuxart J (2006) On the turbulence in the upper part of the low-level jet: an experimental and numerical study. Boundary-Layer Meteorol 118: 379–400. doi: 10.1007/s10546-005-0608-y CrossRefGoogle Scholar
  7. Cuxart J, Jiménez MA (2007) Mixing processes in a nocturnal low-level jet: an LES study. J Atmos Sci 64: 1666–1679. doi: 10.1175/JAS3903.1 CrossRefGoogle Scholar
  8. Cuxart J, Jiménez MA (2011) Deep radiation fog in a wide closed valley: study by numerical modeling and remote sensing. Pure Appl Geophys 1–16. doi: 10.1007/s00024-011-0365-4
  9. Cuxart J, Yagüe C, Morales G, Terradellas E, Orbe J, Calvo J, Fernandez A, Soler MR, Infante C, Buenestado P, Espinalt A, Joergensen HE, Rees JM, Vilá J, Redondo JM, Cantalapiedra IR, Conangla L (2000) Stable atmospheric boundary-layer experiment in Spain (SABLES 98): a report. Boundary-Layer Meteorol 96: 337–370. doi: 10.1023/A:1002609509707 CrossRefGoogle Scholar
  10. Cuxart J, Jiménez MA, Martínez D (2007) Nocturnal mesobeta basin and katabatic flows on a midlatitude island. Mon Weather Rev 135: 918–932. doi: 10.1175/MWR3329.1 CrossRefGoogle Scholar
  11. Dalu GA, Piellke RA, Baldi M, Zeng X (1996) Heat and momentum fluxes induced by thermal inhomogeneities with and without large-scale flow. J Atmos Sci 53: 3286–3302. doi: 10.1175/1520-0469(1996)053 CrossRefGoogle Scholar
  12. Grisogono B, Oerlemans J (2001) A theory for the estimation of surface fluxes in simple katabatic flows. Q J Roy Meteorol Soc 127: 2725–2739. doi: 10.1002/qj.49712757811 CrossRefGoogle Scholar
  13. Holton JR (1972) An introduction to dynamic meteorology. Academic Press, New York, 319 ppGoogle Scholar
  14. Jiménez MA, Mira A, Cuxart J, Luque A, Alonso S, Guijarro JA (2008) Verification of a clear-sky mesoscale simulation using satellite-derived surface temperatures. Mon Weather Rev 136: 5148–5161. doi: 10.1175/2008MWR2461.1 CrossRefGoogle Scholar
  15. Martínez D, Cuxart J, Cunillera J (2008) Conditioned climatology for stably stratified nights in the Lleida area. Tethys, J Weather Clim West Mediterr 5: 13–24. doi: 10.3369/tethys.2008.5.02 Google Scholar
  16. Martínez D, Jiménez MA, Cuxart J, Mahrt L (2010) Heterogeneous nocturnal cooling in a large basin under very stable conditions. Boundary-Layer Meteorol 137: 97–113. doi: 10.1007/s10546-010-9522-z CrossRefGoogle Scholar
  17. Moriarty WW (1993) An improved calibration for tethered balloon wind measurements. Boundary-Layer Meteorol 63: 183–196. doi: 10.1007/BF00705382 CrossRefGoogle Scholar
  18. Oncley SP, Foken T, Vogt R, Kohsiek W, DeBruin HAR, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The energy balance experiment EBEX-2000. Part I: overview and energy balance. Boundary-Layer Meteorol 123: 1–28. doi: 10.1007/s10546-007-9161-1 CrossRefGoogle Scholar
  19. Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83: 555–581CrossRefGoogle Scholar
  20. Salomonson VV, Bames WL, Maymon WP, Montgomery H, Ostrow H (1989) MODIS: advanced facility instrument for studies of the Earth as a system. IEEE Trans Geosci Remote Sens 27: 145–153. doi: 10.1109/36.20292 CrossRefGoogle Scholar
  21. Shapiro A, Fedorovich E (2007) Katabatic flow along a differentially cooled sloping surface. J Fluid Mech 571: 149–175. doi: 10.1017/S0022112006003302 CrossRefGoogle Scholar
  22. Smith CM, Skyllingstad ED (2005) Numerical simulation of katabatic flow with changing slope angle. Mon Weather Rev 133: 3065–3080CrossRefGoogle Scholar
  23. Spiess T, Bange J, Buschmann M, Vorsmann P (2007) First application of the meteorological Mini-UAV ‘M2AV’. Meteorol Z 16(2): 159–169(11). doi: 10.1127/0941-2948/2007/0195 CrossRefGoogle Scholar
  24. Taylor CM, Parker DJ, Harris PP (2007) An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys Res Lett 34: L15801. doi: 10.1029/2007GL030572 CrossRefGoogle Scholar
  25. Van den Kroonenberg AC, Martin T, Buschmann M, Bange J, Vorsmann P (2008) Measuring the wind vector using the autonomous mini aerial vehicle M2AV. J Atmos Ocean Technol 25: 1969–1982. doi: 10.1175/2008JTECHA1114.1 CrossRefGoogle Scholar
  26. Viterbo P, Beljaars A, Mahfouf J-F, Teixeira J (1999) The representation of soil moisture freezing and its impact on the stable boundary layer. Q J Roy Meteorol Soc 125: 2401–2426. doi: 10.1002/qj.49712555904 CrossRefGoogle Scholar
  27. Vosper SB, Brown AR (2008) Numerical simulations of sheltering in valleys: the formation of nighttime cold-air pools. Boundary-Layer Meteorol 127: 429–448. doi: 10.1007/s10546-008-9272-3 CrossRefGoogle Scholar
  28. Whiteman CD, De Wekker SFJ, Haiden T (2009) Effect of dewfall and frostfall on nighttime cooling in a small, closed basin. J Appl Meteorol Climatol 46: 3–13. doi: 10.1175/JAM2453.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • J. Cuxart
    • 1
  • J. Cunillera
    • 2
  • M. A. Jiménez
    • 1
  • D. Martínez
    • 1
  • F. Molinos
    • 1
  • J. L. Palau
    • 3
  1. 1.Grup de Meteorologia, Departament de FísicaUniversitat de les Illes BalearsPalmaSpain
  2. 2.Àrea de Recerca i ModelitzacióServei Meteorològic de CatalunyaBarcelonaSpain
  3. 3.Àrea de dinàmica de contaminantsCentre d’Estudis Ambientals del MediterraniValenciaSpain

Personalised recommendations