Boundary-Layer Meteorology

, Volume 145, Issue 1, pp 229–248 | Cite as

A Large-Eddy Simulation Study of Water Vapour and Carbon Dioxide Isotopes in the Atmospheric Boundary Layer



A large-eddy simulation model developed at the National Center for Atmospheric Research (NCAR) is extended to simulate the transport and diffusion of C18OO, H218O and 13CO2 in the atmospheric boundary layer (ABL). The simulation results show that the 18O compositions of leaf water and the ABL CO2 are moderately sensitive to wind speed. The variations in the 18O composition of water vapour are an order of magnitude greater than those in the 13C and 18O compositions of CO2 both at turbulent eddy scales and across the capping inversion. In a fully-developed convective ABL, these isotopic compositions are well mixed as with other conserved atmospheric quantities. The Keeling intercepts determined with the simulated high-frequency turbulence time series do not give a reliable estimate of the 18O composition of the surface water vapour flux and may be a reasonable approximation to the 13C and 18O compositions of the surface CO2 flux in the late afternoon only after a deep convective ABL has developed. We suggest that our isotopic large-eddy simulation (ISOLES) model should be a useful tool for testing and formulating research hypotheses on land–air isotopic exchanges.


Isotopes Keeling plot Kinetic fractionation Land-surface model Large-eddy simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10546_2011_9631_MOESM1_ESM.doc (1.9 mb)
ESM 1 (DOC 1,943 kb)


  1. Baldocchi DD, Bowling DR (2003) Modeling the discrimination of 13CO2 above and within a temperate broad-leaved forest canopy on hourly to seasonal time scales. Plant Cell Environ 26: 231–244CrossRefGoogle Scholar
  2. Barbour MM, Fischer RA, Sayre KD, Farquhar GD (2000) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Aust J Plant Physiol 27: 625–637Google Scholar
  3. Barr A, Betts A (1997) Radiosonde boundary layer budgets above a boreal forest. J Geophys Res 102: 29205–29212CrossRefGoogle Scholar
  4. Battle M, Bender ML, Tans PP, White JWC, Ellis JT, Convay T, Francey RJ (2000) Global carbon sinks and their variability inferred from atmospheric O2 and 13C. Science 287: 2467–2470CrossRefGoogle Scholar
  5. Bender M, Sowers T, Labeyrie L (1994) The Dole effect and its variations during the last 130000 years as measured in the Vostok ice core. Glob Biogeochem Cycles 8: 363–367CrossRefGoogle Scholar
  6. Betts AK, Helliker B, Berry J (2004) Coupling between CO2, water vapour, temperature, and radon and their fluxes in an idealized equilibrium boundary layer over land. J Geophys Res 109: D18103. doi:10.1029/2003JD004420 CrossRefGoogle Scholar
  7. Black TA, den Hartog G, Neumann HH, Blanken PD, Yang PC, Russell C, Nesic Z, Lee X, Chen SG, Staebler R, Novak MD (1996) Annual cycles of water vapor and carbon dioxide fluxes in and above a boreal aspen forest. Glob Chang Biol 2: 219–229CrossRefGoogle Scholar
  8. Bowling DR, Baldocchi DD, Monson RK (1999) Dynamics of isotopic exchange of carbon dioxide in a Tennessee deciduous forest. Glob Biogeochem Cycles 13: 903–922CrossRefGoogle Scholar
  9. Bowling DR, Tans PP, Monson RK (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Glob Chang Biol 7: 127–145CrossRefGoogle Scholar
  10. Bowling DR, Burns SP, Conway TJ et al (2005) Extensive observations of CO2 carbon isotope content in and above a high-elevation subalpine forest. Glob Biogeochem Cycles 19: GB3023CrossRefGoogle Scholar
  11. Bush SE, Pataki DE, Ehleringer JR (2007) Sources of variation in δ 13C of fossil fuel emissions in Salt Lake City, USA. Appl Geochem 22: 715–723CrossRefGoogle Scholar
  12. Chen B, Chen JM, Tans PP, Huang L (2006) Simulating dynamics of 13C of CO2 in the planetary boundary layer over a boreal forest region: covariation between surface fluxes and atmospheric mixing. Tellus 58B: 537–549Google Scholar
  13. Ciais P, Tans PP, Trolier M et al (1995) A large northern hemisphere terrestrial CO2 sink indicated by 13C/12C ratio of atmospheric CO2. Science 269: 1098–1102CrossRefGoogle Scholar
  14. Ciais P, Denning AS, Tans PP, Berry JA, Randall DA, Collatz GJ, Sellers PJ, White JWC, Trolier M, Meijer HAJ, Francey RJ, Monfray MH (1997) A three-dimensional synthesis study of δ 18O in atmospheric CO2: 1. Surface fluxes. J Geophys Res 102: 5857–5872CrossRefGoogle Scholar
  15. Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceanographic studies and paleotemperatures. Lab di Geol Necl, Pisa, pp 9130Google Scholar
  16. Cuntz M, Ciais P, Hoffmann G (2002) Modeling the continental effect of oxygen isotopes over Eurasia. Tellus B 54: 895–909CrossRefGoogle Scholar
  17. Cuntz M, Ciais P, Hoffmann G, Knorr W (2003) A comprehensive global three-dimensional model of 18O in atmospheric CO2: 1 validation of surface processes. J Geophys Res 108: 4527CrossRefGoogle Scholar
  18. Farquhar GD, Cernusak LA (2005) On the isotopic composition of leaf water in the non-steady state. Funct Plant Biol 32: 293–303CrossRefGoogle Scholar
  19. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40: 503–537CrossRefGoogle Scholar
  20. Farquhar GD, Lloyd J, Taylor JA, Flanagan LB, Syvertsen JP, Hubick KT, Wong SC, Ehleringer JR (1993) Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363: 439–443CrossRefGoogle Scholar
  21. Fung I, Field CB, Berry JA, Thompson MV et al (1997) Carbon-13 exchanges between the atmosphere and biosphere. Glob Biogeochem Cycles 11: 507–533CrossRefGoogle Scholar
  22. Gillon J, Yakir D (2001) Anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2. Science 291: 2584–2587CrossRefGoogle Scholar
  23. Górska M, de Arellano JV, Lemone MA, Heerwaarden CCV (2008) Mean and flux horizontal variability of virtual potential temperature, moisture, and carbon dioxide: aircraft observations and LES study. Mon Weather Rev 136: 4435–4451CrossRefGoogle Scholar
  24. Griffis TJ, Zhang J, Baker JM, Kljun N, Billmark K (2007) Determining carbon isotope signatures from micrometeorological measurements: implications for studying biosphere–atmosphere exchange processes. Boundary-Layer Meteorol 123: 295–316CrossRefGoogle Scholar
  25. Griffis TJ, Sargent SD, Baker JM, Lee X, Tanner BD, Greene J, Swiatek E, Billmark K (2008) Direct measurement of biosphere–atmosphere isotopic CO2 exchange using the eddy covariance technique. J Geophys Res 113: D08304. doi:10.1029/2007JD009297 CrossRefGoogle Scholar
  26. Griffis TJ, Sargent SD, Lee X, Baker JM, Greene J, Erickson M, Zhang X, Billmark K, Schultz N, Xiao W, Hu N (2010) Determining the oxygen isotope composition of evapotranspiration using eddy covariance. Boundary-Layer Meteorol 137: 307–326CrossRefGoogle Scholar
  27. Griffis TJ, Lee X, Baker JM, Billmark K, Schultz N, Erickson M, Zhang X, Fassbinder J, Xiao W, Hu N (2011) Oxygen isotope composition of evapotranspiration and its relation to C4 photosynthetic discrimination. J Geophys Res Biogeosci 116: G01035. doi:10.1029/2010JG001514 CrossRefGoogle Scholar
  28. He H, Smith RB (1999) Stable isotope composition of water vapor in the atmospheric boundary layer above the forests of New England. J Geophys Res 104: 11657–11673CrossRefGoogle Scholar
  29. Helliker BR, Roden JS, Cook C, Ehleringer JR (2002) A rapid and precise method for sampling and determining the oxygen isotope ratio of atmospheric water vapor. Rapid Commun Mass Spectrom 16: 929–932CrossRefGoogle Scholar
  30. Helliker BR, Berry JA, Betts AK, Bakwin PS, Davis KJ, Denning AS, Ehleringer JR, Miller JB, Butler MP, Ricciuto DM (2004) Estimates of net CO2 flux by application of equilibrium boundary layer concepts to CO2 and water vapor measurements from a tall tower. J Geophys Res 109: D20106. doi:10.1029/2004JD004532 CrossRefGoogle Scholar
  31. Huang J, Lee X, Patton EG (2008) A modeling study of flux imbalance and the influence of entrainment in the convective boundary layer. Boundary-Layer Meteorol 27: 273–292CrossRefGoogle Scholar
  32. Huang J, Lee X, Patton E (2009) Dissimilarity of scalar transport in the convective boundary layer in inhomogeneous landscapes. Boundary-Layer Meteorol 130: 327–345CrossRefGoogle Scholar
  33. Huang J, Lee X, Patton EG (2011) Entrainment and budget of heat, water vapor and carbon dioxide in a convective boundary layer driven by time-varying solar radiation. J Geophy Res Atmos 116: D06308. doi:10.1029/2010/JD014938 CrossRefGoogle Scholar
  34. Idso SB (1981) A set of equations for full spectrum and 8- to 14-μm and 10.5- to 12.5-μm thermal radiation from cloudless skies. Water Resour Res 17: 295–304. doi:10.1029/WR017i002p00295 CrossRefGoogle Scholar
  35. Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T (2004) LES study of the energy imbalance problem with eddy covariance fluxes. Boundary-Layer Meteorol 110: 381–404CrossRefGoogle Scholar
  36. Kang SL, Davis KJ (2008) Effects of mesoscale surface heterogeneity on the fair-weather convective atmospheric boundary layer. J Atmos Sci 65: 3197–3213CrossRefGoogle Scholar
  37. Katul GG, Sempreviva AM, Cava D (2008) The temperature–humidity covariance in the marine surface layer: a one-dimensional analytical model. Boundary-Layer Meteorol 126: 263–278CrossRefGoogle Scholar
  38. Lai CT, Ehleringer JR, Bond BJ, KT Paw U (2005) Contributions of evaporation, isotopic non-steady state transpiration, and atmospheric mixing on the δ 18O of water vapor in Pacific Northwest coniferous forests. Plant Cell Environ 29: 77–94CrossRefGoogle Scholar
  39. Lai C, Schauer A, Owensby C, Ham J, Helliker B, Tans P, Ehleringer J (2006) Regional CO2 fluxes inferred from mixing ratio measurements: estimates from flask air samples in central Kansas, USA. Tellus 58B: 523–536Google Scholar
  40. Lee X, Massman W (2011) A perspective on thirty years of the Webb, Pearman and Leuning density corrections. Boundary-Layer Meteorol 139: 37–59CrossRefGoogle Scholar
  41. Lee X, Smith R, Williams J (2006) Water vapor 18O/16O isotope ratio in surface air in New England, USA. Tellus 58B: 293–304Google Scholar
  42. Lee X, Kim K, Smith RB (2007) Temporal variations of the 18O/16O signal of the whole-canopy transpiration in a temperate forest. Glob Biogeochem Cycles 21: GB3013. doi:10.1029/2006GB002871 CrossRefGoogle Scholar
  43. Lee X, Griffis TJ, Baker JM, Billmark KA, Kim K, Welp LR (2009) Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Glob Biogeochem Cycles 23: GB1002. doi:10.1029/2008GB003331 CrossRefGoogle Scholar
  44. Lloyd J, Francey R, Mollicone D, Raupach M, Sogachev A, Arneth A, Byers J, Kelliher F, Rebmann C, Valentini R, Wong S, Bauer G, Schulze E (2001) Vertical profiles, boundary layer budgets, and regional flux estimates for CO2 and its 13C/12C ratio and for water vapor above a forest/bog mosaic in central Siberia. Glob Biogeochem Cycles 15: 267–284CrossRefGoogle Scholar
  45. Moeng C (1984) A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41: 2052–2062CrossRefGoogle Scholar
  46. Moeng CH, Wyngaard JC (1984) Statistics of conservative scalars in the convective boundary layer. J Atmos Sci 41: 3161–3169CrossRefGoogle Scholar
  47. Ogée J, Peylin P, Ciais P, Bariac T, Brunet Y, Berbigier P, Roche C, Richard P, Bardoux G, Bonnefond JM (2003) Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: a cost-effective sampling strategy. Glob Biogeochem Cycles 17: 1070. doi:10.1029/2002GB001995 CrossRefGoogle Scholar
  48. Ogée J, Peylin P, Cuntz M, Bariac T, Brunet Y, Berbigier P, Richard P, Ciais P (2004) Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: an error propagation analysis with 13CO2 and C18OO data. Glob Biogeochem Cycles 18: GB2019CrossRefGoogle Scholar
  49. Pataki DE, Bowling DR, Ehleringer JR, Zobitz JM (2006) High resolution atmospheric monitoring of urban carbon dioxide sources. Geophys Res Lett 33: L03813CrossRefGoogle Scholar
  50. Patton EG, Sullivan PP, Davis KJ (2003) The influence of a forest canopy on top-down and bottom-up diffusion in the planetary boundary layer. Q J Roy Meteorol Soc 129: 1415–1434CrossRefGoogle Scholar
  51. Patton EG, Sullivan PP, Moeng CH (2005) The influence of idealized heteorogeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmos Sci 62: 2078–2097CrossRefGoogle Scholar
  52. Riley WJ, Still CJ, Torn MS, Berry JA (2002) A mechanistic model of H218O and C18OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses. Glob Biogeochem Cycles 16: 1095–1109. doi:10.1029/2002GB001878 CrossRefGoogle Scholar
  53. Ronda R, De Bruin H, Holtslag A (2001) Representation of the canopy conductance in modeling the surface energy budget for low vegetation. J Appl Meteorol 40: 1431–1444CrossRefGoogle Scholar
  54. Roth M, Oke TR (1995) Relative efficiencies of turbulent transfer of heat, mass and momentum over a patchy urban surface. J Atmos Sci 52: 1863–1874CrossRefGoogle Scholar
  55. Scanlon TM, Kustas WP (2010) Partitioning carbon dioxide and water vapor fluxes using correlation analysis. Agric For Meteorol 150: 89–99CrossRefGoogle Scholar
  56. Steinfeld G, Letzel MO, Raasch S, Kanda M, Inagaki A (2007) Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: results of a large-eddy simulation study. Boundary-Layer Meteorol 123: 77–98CrossRefGoogle Scholar
  57. Still CJ et al (2009) Influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and C18OO exchanges. J Geophys Res 114: G01018. doi:10.1029/2007JG000675 CrossRefGoogle Scholar
  58. Sullivan P, Moeng C, Stevens B, Lenschow D, Mayor S (1998) Structure of the entrainment zone capping the convective atmospheric boundary layer. J Atmos Sci 55: 3042–3064CrossRefGoogle Scholar
  59. Tans PP (1980) On calculating the transfer of 13C in reservoir models of the carbon cycle. Tellus 32: 464–469CrossRefGoogle Scholar
  60. Welp LR, Lee X, Kim K, Griffis TJ, Billmark K, Baker JM (2008) δ 18O of water vapor, evapotranspiration and the sites of leaf water evaporation in a soybean canopy. Plant Cell Environ 31: 1214–1228CrossRefGoogle Scholar
  61. Wen XF, Zhang SC, Sun XM, Yu GR, Lee X (2010) Water vapor and precipitation isotope ratios in Beijing, China. J Geophys Res Atmos 115: D01103. doi:10.1029/2009JD012408 CrossRefGoogle Scholar
  62. Williams DG, Cable W, Hultine K et al (2004) Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric For Meteorol 125: 241–258CrossRefGoogle Scholar
  63. Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD (2001) A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric For Meteorol 106: 153–168CrossRefGoogle Scholar
  64. Xiao W, Lee X, Griffis T, Kim K, Welp L, Yu Q (2010) A modeling investigation of canopy–air oxygen isotopic exchange of water vapor and carbon dioxide in a soybean field. J Geophys Res Biogeosci 115: G01004. doi:10.1029/2009JG001,163 CrossRefGoogle Scholar
  65. Yakir D, Sternberg LSL (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123: 297–311CrossRefGoogle Scholar
  66. Zobitz JM, Burns SP, Reichstein M, Bowling DR (2008) Partitioning net ecosystem carbon exchange and the carbon isotopic disequilibrium in a subalpine forest. Glob Chang Biol 14: 1785–1800CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Xuhui Lee
    • 1
  • Jianping Huang
    • 1
    • 2
    • 3
  • Edward G. Patton
    • 4
  1. 1.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA
  2. 2.Yale-NUIST Center on Atmospheric EnvironmentNanjing University of Information, Science and TechnologyNanjingChina
  3. 3.I. M. System Group, Environmental Modeling CenterNOAA National Centers for Environmental PredictionCamp SpringsUSA
  4. 4.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations