Skip to main content
Log in

The Use of Weather Forecasts to Characterise Near-Surface Optical Turbulence

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The propagation of optical and electromagnetic waves is affected by small-scale atmospheric turbulence, quantified by the structure parameter of the refractive index. In the atmospheric surface layer, the mean structure parameter \({C_{n}^{2}}\) , as averaged over the large-scale turbulence, relates to meteorological forcings through well-documented relationships. Present-day numerical weather forecast models routinely produce these forcings at the global scale. This study introduces a method where the products of such a model are used to calculate the mean optical turbulence near the surface. The method is evaluated against scintillometry measurements over climatologically distinct sites in Western Europe. The diurnal cycle modulation, and regional and seasonal contrasts, are all reproduced by our predictions. Hence, the present method explains and predicts some essential aspects of the meteorological variability of \({C_{n}^{2}}\) near the surface. The noted discrepancies combine instrumental limitations, site peculiarities, differences related to distinct averaging procedures, and model errors, notably from weather forecasts. The minute-scale fluctuations of the measured scintillation rate are also analysed in the light of the forecast weather conditions. Fair-weather daytime periods consistently show a small short-term variability compared to the nighttime and perturbed weather periods. Thus, this short-term variability appears to have a predictable component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas E (1988a) Estimating \({{\rm C}_{\rm n}^{2}}\) over snow and sea ice from meteorological data. J Opt Soc Am 5: 481–495

    Article  Google Scholar 

  • Andreas E (1988b) Atmospheric stability from scintillation measurements. Appl Opt 27(11): 2241–2246

    Article  Google Scholar 

  • Andreas A, Fairall C, Persson P, Guest P (2003) Probability distributions for the inner scale and the refractive index structure parameter and their implications for flux averaging. J Appl Meteorol 42: 1316–1329

    Article  Google Scholar 

  • Antonia R, Chambers A (1980) On the correlation between turbulent velocity and temperature derivatives in the atmospheric surface layer. Boundary-Layer Meteorol 18: 399–410

    Article  Google Scholar 

  • Antonia R, Hopfinger E, Gagne Y, Anselmet F (1984) Temperature structure functions in turbulent shear flows. Phys Rev A 30(5): 2704–2707

    Article  Google Scholar 

  • Beljaars A, Schotanus P, Nieuwstadt F (1983) Surface layer similarity under nonuniform fetch conditions. J Appl Meteorol 22: 1800–1810

    Article  Google Scholar 

  • Bendersky S, Kopeika N, Blaunstein N (2004) Atmospheric optical turbulence over land in middle east coastal environments: prediction modeling and measurements. Appl Opt 43(20): 4070–4079

    Article  Google Scholar 

  • Ben-Yosef N, Goldner E (1988) Sample size influence on optical scintillation analysis. 1: analytical treatment of the higher-order irradiance moments. Appl Opt 27(11): 2167–2171

    Article  Google Scholar 

  • Berrisford P, Dee D, Fielding K, Fuentes M, KÃ¥llberg P, Kobayashi S, Uppala S (2009) The ERA-Interim archive version 1.0. ERA Report Series, 16 pp, available electronically at http://www.ecmwf.int

  • Bougeault P, De Hui C, Fleury B, Laurent J (1995) Investigation of seeing by means of an atmospheric mesoscale numerical simulation. Appl Opt 34(18): 3481–3488

    Article  Google Scholar 

  • Byrkjedal O, Esau I, Kvamsto N (2008) Sensitivity of simulated wintertime Arctic atmosphere to vertical resolution in the ARPEGE/IFS model. Clim Dyn 30: 687–701

    Article  Google Scholar 

  • Cheinet S, Siebesma P (2007) The impact of boundary layer turbulence on optical propagation. Proc SPIE 6747(A): 11

    Google Scholar 

  • Cheinet S, Siebesma P (2009) Variability of local structure parameters in the convective boundary layer. J Atmos Sci 66: 1002–1017

    Article  Google Scholar 

  • Cheinet S, Beljaars A, Köhler M, Morcrette J-J, Viterbo P (2005) Validating physical processes in the ECMWF forecasts through the ARM SGP site measurements. ECMWF-ARM Technical Memorandum Nr. 1, 25 pp, available electronically at http://www.ecmwf.int

  • Cherubini T, Businger S, Lyman R, Chun M (2008) Modeling optical turbulence and seeing over Mauna Kea. J Appl Meteorol 47: 1140–1155

    Article  Google Scholar 

  • Clifford S, Ochs G, Lawrence R (1974) Saturation of optical scintillation by strong turbulence. J Opt Soc Am 64(2): 148–154

    Article  Google Scholar 

  • Cuxart J, Holtslag A, Beare R, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld G-J, Svensson G, Taylor P, Weng W, Wunsch S, Xu K-M (2005) Single-colmun model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol. doi:10.1007/s10546-005-3780-1.

  • Davidson P (2004) Turbulence, an introduction for scientists and engineers. Oxford University Press, Oxford, p 657 pp

    Google Scholar 

  • Dorion C, Hurtaud Y (2002) Constitution d’une base de mesure de caractérisation de la turbulence au-dessus du sol. Description des expérimentations, Rapport Technique RT/02/023/CELAR/DIRAC/MDE/05129/NC, 47 pp

  • Edson J, Fairall C (1998) Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J Atmos Sci 55: 2311–2328

    Article  Google Scholar 

  • Fairall C, Schacher G, Davidson K (1980) Measurements of the humidity structure function parameters \({{\rm C}_{\rm q}^{2}}\) and C Tq, over the ocean. Boundary-Layer Meteorol 19: 81–92

    Article  Google Scholar 

  • Foken Th (2006) 50 years of the Monin-Obukhov similarity theory. Boundary-Layer Meteorol 119(3): 431–447

    Article  Google Scholar 

  • Frederickson P, Davidson K, Zeisse C, Bendall C (2000) Estimating the refractive index structure parameter \({({\rm C}_{\rm n}^{2})}\) over the ocean using bulk methods. J Appl Meteorol 39: 1770–1783

    Article  Google Scholar 

  • Frehlich R (1992) Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer. J Atmos Sci 49: 1494–1509

    Article  Google Scholar 

  • Frehlich R (1994) Effects of global intermittency on laser propagation in the atmosphere. Appl Opt 33(24): 5764–5769

    Article  Google Scholar 

  • Frehlich R, Sharman R, Vandenberghe F, Yu W, Liu Y, Knievel J, Jumper G (2010) Estimates of \({C_n^2 }\) from numerical weather prediction model output and comparison with thermosonde data. J Appl Meteorol 49: 1742–1755

    Article  Google Scholar 

  • Fried D (1966) Optical resolution through a randomly inhomogeneous medium for very long and very short exposure. J Opt Soc Am 56(10): 1372–1379

    Article  Google Scholar 

  • Hartogensis O (2006) Exploring scintillometry in the stable atmospheric surface layer. PhD thesis, Wageningen University, 27 pp

  • Hill R (1997) Algorithms for obtaining atmospheric surface-layer fluxes from scintillation measurements. J Atmos Ocean Technol 14: 456–467

    Article  Google Scholar 

  • Hill R, Ochs G (1978) Fine calibration of large-aperture optical scintillometers and an optical estimate of inner scale of turbulence. Appl Opt 17(22): 3608–3612

    Article  Google Scholar 

  • Holst G (1995) Electro-optical imaging system performance. SPIE, Bellingham

    Google Scholar 

  • Hufnagel R, Stanley N (1964) Modulation transfer function associated with image transmission through turbulent media. J Opt Soc Am 54(1): 52–61

    Article  Google Scholar 

  • Hurtaud Y, Corbihan P (2003) Constitution d’une base de données de caractérisation de la turbulence au-dessus du sol – Synthèse et première analyse des données. Rapport Technique RT/2003/2003-103066/CELAR/MDE/03550, 32 pp

  • Hutt D (1999) Modeling and measurements of atmospheric optical turbulence over land. Opt Eng 38(8): 1288–1295

    Article  Google Scholar 

  • IFS Documentation (2006) IFS documentation of CY31r1—physical processes, pp 29–50, available electronically at http://www.ecmwf.int

  • Kleissl J, Gomez J, Hong S-H, Hendrickx J, Rahn T, Defoor W (2008) A large aperture scintillometer intercomparison study. Boundary-Layer Meteorol 128: 133–150

    Article  Google Scholar 

  • Kleissl J, Watts C, Rodriguez J, Naif S, Vivoni E (2009) Intercomparison study—continued. Boundary-Layer Meteorol 130: 437–443

    Article  Google Scholar 

  • Kohsiek W (1982) Measuring \({{\rm C}_{\rm T}^{2},{\rm C}_{\rm q}^{2}}\) and C Tq in the unstable surface layer, and relations to the vertical fluxes of heat and moisture. Boundary-Layer Meteorol 24: 89–107

    Article  Google Scholar 

  • Kohsiek W (1988) Observation of the structure parameters \({{\rm C}_{\rm T}^{2}, {\rm C}_{\rm Tq}}\) , and \({{\rm C}_{\rm q}^{2}}\) in the mixed layer over land. Appl Opt 27(11): 2236–2240

    Article  Google Scholar 

  • Kohsiek W, Meijninger W, Debruin H, Beyrich F (2006) Saturation of the large aperture scintillometer. Boundary-Layer Meterol 121(1): 111–126

    Article  Google Scholar 

  • Kopeika N, Kogan I, Israeli R, Dinstein I (1990) Prediction of image propagation quality through the atmosphere: the dependence of atmospheric modulation transfer function on weather. Opt Eng 29(12): 1427–1438

    Article  Google Scholar 

  • Lei F, Tiziani H (1993) Atmospheric influence on image quality of airborne photographs. Opt Eng 32(9): 2271–2280

    Article  Google Scholar 

  • Lopez Ph (2008) A 5-year 40- km resolution global climatology of super-refraction for ground-based radar meteorology. ECMWF Technical Memorandum Nr. 549, 22 pp

  • Mahon R, Moore Ch, Burris H, Rabinovich W, Stell M, Suite M, Thomas L (2009) Analysis of long-term measurements of laser propagation over the Chesapeake Bay. Appl Opt 48(12): 2388–2400

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90: 375–396

    Article  Google Scholar 

  • Masciadri E, Vernin J, Bougeault Ph (1999) 3D mapping of optical turbulence using an atmospheric numerical model. I. A useful tool for the ground-based astronomy. Astron Astrophys Suppl Ser 137: 185–202

    Article  Google Scholar 

  • Muschinski A, Frehlich R, Balsley B (2004) Small-scale and large-scale intermittency in the nocturnal boundary layer and residual layer. J Fluid Mech 515: 319–351

    Article  Google Scholar 

  • Nieuwstadt J (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41: 2202–2216

    Article  Google Scholar 

  • Ochs G, Wang T-I (1978) Finite aperture optical scintillometer for profiling wind and \({{\rm C}_{\rm n}^{2}}\) . Appl Opt 17(23): 3774–3778

    Article  Google Scholar 

  • Pahlow M, Parlange M, Porté-Agel F (2001) On Monin-Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorol 99: 225–248

    Article  Google Scholar 

  • Poggio L (1998) Use of scintillometry measurements to derive fluxes in complex terrain. PhD thesis, Swiss Federal Institute of Technology (ETH) No. 12755, Zurich, 148 pp

  • Sadot D, Kopeika N (1992) Forecasting optical turbulence strength on the basis of meteorology and aerosols: models and validation. Opt Eng 31(2): 200–212

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter No. 110, pp 25–35

  • Sreenivasan K, Antonia R (1997) The phenomenology of small-scale turbulence. Ann Rev Fluid Mech 29: 435–472

    Article  Google Scholar 

  • Szilagyi J, Katul G, Parlange M, Albertson J, Cahill A (1996) The local effect of intermittency on the inertial subrange energy spectrum of the atmospheric surface layer. Boundary-Layer Meteorol 79: 35–50

    Article  Google Scholar 

  • Tatarski V (1961) Wave propagation in a turbulent medium. McGraw and Hill, New York, p 285 pp

    Google Scholar 

  • Thiermann V (1999) The measurement of refractive index structure function constant \({{\rm C}_{n}^{2}}\) using the Large Aperture Scintillometer LAS900—theoretical aspects, report of Scintec Atmosphärenmesstechnik A.G. Tübingen, 33 pp

  • Thiermann V, Grassl H (1992) The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Boundary-Layer Meteorol 58: 367–389

    Article  Google Scholar 

  • Tunick A (1998) The refractive index structure parameter/atmospheric optical turbulence model: CN2. U.S. Army Research Laboratory Rep. ARL-TR-1615, 27 pp

  • Von Engeln A, Teixeira J (2004) A ducting climatology derived from ECMWF global analysis fields. J Geophys Res 109(D18): 18. doi:10.1029/2003JD004380

    Article  Google Scholar 

  • Walters D (1981) Atmospheric modulation transfer function for desert and mountain locations: r 0 measurements. J Opt Soc Am 71(4): 406–409

    Google Scholar 

  • Walters D, Kunkel K (1981) Atmospheric modulation transfer function for desert and mountain locations: the atmospheric effects on r 0. J Opt Soc Am 71(4): 397–405

    Google Scholar 

  • Walters D, Kunkel K, Hoidale G (1981) Diurnal and seasonal variations in the atmospheric structure parameter \({({\rm C}_{\rm n}^{2})}\) that affect the atmospheric modulation transfer function (MTF). SPIE Proc 277: 6–9

    Google Scholar 

  • Wang T-I, Ochs G, Clifford S (1978) A saturation-resistent optical scintillometer to measure \({C_{n}^{2}}\) . J Opt Soc Am 68(3): 334–338

    Article  Google Scholar 

  • Weiss-Wrana K (2005) Turbulence statistics applied to calculate expected turbulence-induced scintillation effects on electro-optical systems in different climate regions. SPIE Proc 5891: 117–128

    Google Scholar 

  • Weiss-Wrana K, Balfour L (2002) Statistical analysis of measurements of atmospheric turbulence in different climates. SPIE Proc 4538: 93–101

    Article  Google Scholar 

  • Wyngaard J, Kosovic B (1994) Similarity of structure-function parameters in the stably stratified boundary layer. Boundary-Layer Meteorol 71: 277–296

    Article  Google Scholar 

  • Wyngaard J, Izumi Y, Collins S (1971) Behavior of the refractive index structure parameter near the ground. J Opt Soc Am 61(12): 1646–1650

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cheinet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheinet, S., Beljaars, A., Weiss-Wrana, K. et al. The Use of Weather Forecasts to Characterise Near-Surface Optical Turbulence. Boundary-Layer Meteorol 138, 453–473 (2011). https://doi.org/10.1007/s10546-010-9567-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-010-9567-z

Keywords

Navigation