Boundary-Layer Meteorology

, Volume 138, Issue 3, pp 433–451 | Cite as

The intOA Experiment: A Study of Ocean-Atmosphere Interactions Under Moderate to Strong Offshore Winds and Opposing Swell Conditions in the Gulf of Tehuantepec, Mexico

  • F. J. Ocampo-Torres
  • H. García-Nava
  • R. Durazo
  • P. Osuna
  • G. M. Díaz Méndez
  • H. C. Graber
Article

Abstract

The Gulf of Tehuantepec air–sea interaction experiment (intOA) took place from February to April 2005, under the Programme for the Study of the Gulf of Tehuantepec (PEGoT, Spanish acronym for Programa para el Estudio del Golfo de Tehuantepec). PEGoT is underway aiming for better knowledge of the effect of strong and persistent offshore winds on coastal waters and their natural resources, as well as performing advanced numerical modelling of the wave and surface current fields. One of the goals of the intOA experiment is to improve our knowledge on air–sea interaction processes with particular emphasis on the effect of surface waves on the momentum flux for the characteristic and unique conditions that occur when strong Tehuano winds blow offshore against the Pacific Ocean long period swell. For the field campaign, an air–sea interaction spar (ASIS) buoy was deployed in the Gulf of Tehuantepec to measure surface waves and the momentum flux between the ocean and the atmosphere. High frequency radar systems (phase array type) were in operation from two coastal sites and three acoustic Doppler current profilers were deployed near-shore. Synthetic aperture radar images were also acquired as part of the remote sensing component of the experiment. The present paper provides the main results on the wave and wind fields, addressing the direct calculation of the momentum flux and the drag coefficient, and gives an overview of the intOA experiment. Although the effect of swell has been described in recent studies, this is the first time for the very specific conditions encountered, such as swell persistently opposing offshore winds and locally generated waves, to show a clear evidence of the influence on the wind stress of the significant steepness of swell waves.

Keywords

Air–sea interaction Field measurements intOA Momentum flux Sea state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anctil F, Donelan MA, Drennan WM, Graber HC (1994) Eddy-correlation measurements of air-sea fluxes from a discuss buoy. J Atmos Ocean Technol 11: 1144–1150CrossRefGoogle Scholar
  2. Banner ML, Chen EJW, Walsh EJ, Jensen JB, Lee CS, Fandry C (1999) The southern ocean waves experiment, Part 1, Overview and mean results. J Phys Oceanogr 29: 2130–2145CrossRefGoogle Scholar
  3. Barton ED, Lavín MF, Trasviña A (2009) Coastal circulation and hydrography in the Gulf of Tehuantepec, Mexico, during winter. Cont Shelf Res 29: 485–500CrossRefGoogle Scholar
  4. Collard F, Ardhuin F, Chapron B (2005) Extraction of coastal ocean wave fields from SAR images. IEEE J Ocean Eng 30: 3. doi:10.1109/JOE.2005.857503 CrossRefGoogle Scholar
  5. Donelan MA (1990) Air-sea interaction. In: Méhauté BL, Hanes DM (eds) The sea: ocean engineering science, vol 1. Wiley, New York, 640 ppGoogle Scholar
  6. Donelan MA, Drennan WM, Katsaros K (1997) The air-sea momentum flux in conditions of wind sea and swell. J Phys Oceanogr 27: 2087–2099CrossRefGoogle Scholar
  7. Drennan WM, Donelan MA, Madsen N, Katsaros KB, Terray EA, Flagg CN (1994) Directional wave spectra from a swath ship at sea. J Atmos Ocean Technol 11: 1109–1116CrossRefGoogle Scholar
  8. Drennan WM, Kahma KK, Donelan MA (1999) On momentum flux and velocity spectra over waves. Boundary-Layer Meteorol 92: 489–515CrossRefGoogle Scholar
  9. Drennan WM, Graber HC, Hauser D, Quentin C (2003) On the wave age dependence of wind stress over pure wind seas. J Geophys Res 108(C3): 8062CrossRefGoogle Scholar
  10. Drennan WM, Taylor PK, Yelland MJ (2005) Parameterizing the sea surface roughness. J Phys Oceanogr 35: 835–848CrossRefGoogle Scholar
  11. Eymard L, Caniaux G, Dupuis H, Prieur L, Giordani H, Troadec R, Bessemoulin P, Lachaud G, Bouhours G, Bourras D, Guérin C, Le Borgne P, Brisson A, Marsouin A (1999) Surface fluxes in the North Atlantic during CATCH/FASTEX. Q J Roy Meteorol Soc 125: 3563–3599CrossRefGoogle Scholar
  12. García-Nava H, Ocampo-Torres FJ, Osuna P, Donelan MA (2009) Wind stress in the presence of swell under moderate to strong wind conditions. J Geophys Res 114: C12008. doi:10.1029/2009JC005389 CrossRefGoogle Scholar
  13. Graber HC, Terray EA, Donelan MA, Drennan WM, Leer JCV, Peters DB (2000) ASIS-a new air-sea interaction spar buoy: design and performance at sea. J Atmos Ocean Technol 17: 708–720CrossRefGoogle Scholar
  14. Hasselmann K, Hasselmann S (1991) On the linear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. J Geophys Res 96: 10713–10729CrossRefGoogle Scholar
  15. Hauser D, Branger H, Bouffies-Cloché S, Despiau S, Drennan WM, Dupuis H, Durand P, Durrieude Madron X, Estournel C, Eymard L, Flamant C, Graber HC, Guérin C, Kahma K, Lachaud G, Lefèvre J-M, Pelon J, Petterson H, Piguet B, Queffeulou P, Tailliez D, Tournadre J, Weill A (2003) The FETCH experiment: an overview. J Geophys Res 108(C3): 8053CrossRefGoogle Scholar
  16. Kahma KK, Calkoen CJ (1996) Growth curve observations. In: Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (eds) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge, p 532Google Scholar
  17. Komen G, Hasselmann S, Hasselmann K (1984) On the existence of a fully developed wind-sea spectrum. J Phys Oceanogr 14: 1271–1285CrossRefGoogle Scholar
  18. Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11: 324–336CrossRefGoogle Scholar
  19. Longuet-Higgins MS, Cartwright DE, Smith ND (1963) Observations of the directional spectrum of sea waves using the motions of a floating buoy. In: Ocean wave spectra. Prentice-Hall Inc, Englewood Cliffs, 357 ppGoogle Scholar
  20. Pan J, Wang DW, Hwang PA (2005) A study of wave effects on wind stress over the ocean in a fetch-limited case. J Geophys Res 110: C02020. doi:10.1029/2003JC002258 CrossRefGoogle Scholar
  21. Romero-Centeno R, Zavala-Hidalgo J, Gallegos A, O’Brien JJ (2003) Isthmus of Tehuantepec wind climatology and ENSO signal. J Clim 16: 2628–2639CrossRefGoogle Scholar
  22. Schulz-Stellenfleth J, Lehner S, Hoja D (2005) A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra. J Geophys Res 110: C05004. doi:10.1029/2004JC002822 CrossRefGoogle Scholar
  23. Schulz-Stellenfleth J, König T, Lehner S (2007) An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. J Geophys Res 112: C03019. doi:10.1029/2006JC003970 CrossRefGoogle Scholar
  24. Smith SD (1980) Wind stress and heat flux over the ocean in gale force winds. J Phys Oceanogr 10: 709–729CrossRefGoogle Scholar
  25. Young IR (1994) On the measurement of directional wave spectra. Appl Ocean Res 16: 283–294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • F. J. Ocampo-Torres
    • 1
  • H. García-Nava
    • 1
  • R. Durazo
    • 2
  • P. Osuna
    • 1
  • G. M. Díaz Méndez
    • 2
  • H. C. Graber
    • 3
  1. 1.Departamento de Oceanografía FísicaCICESEEnsenadaMéxico
  2. 2.Facultad de Ciencias MarinasUniversidad Autónoma de Baja CaliforniaEnsenadaMéxico
  3. 3.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA

Personalised recommendations