Boundary-Layer Meteorology

, Volume 138, Issue 1, pp 163–170 | Cite as

Evidence for Nearly Complete Decoupling of Very Stable Nocturnal Boundary Layer Overland

  • Yu Xia
  • Franz Conen
  • Laszlo Haszpra
  • Zita Ferenczi
  • Wlodek Zahorowski
Research Note

Abstract

Concentrations of 222Rn at 0.1 m and 6.5 m height above ground level and 222Rn flux density were measured during nights characterized by strong cooling, light winds and clear sky conditions in the Carpathian Basin in Hungary. A very stable boundary layer (vSBL) formed on 14 nights between 15 August and 3 September 2009. On 12 nights, an estimated 72% (s.d. 20%) of 222Rn emitted from the surface since sunset was retained within the lowest 6.5 m above the ground until sunrise the following morning. On two nights an intermittent increase in wind speed at 9.4 m height was followed by a rise in temperature at 2.0 m height, indicating a larger atmospheric motion that resulted in 222Rn at 0.1 m around sunrise being the same as around the preceding sunset. It does not seem to be rare in a large continental basin for a vSBL to be nearly completely decoupled from the atmosphere above for the entire period from sunset to sunrise.

Keywords

Decoupling Radon Tracer experiment Very stable nocturnal boundary layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banta RM, Mahrt L, Vickers D, Sun J, Balsley BB, Pichugina YL, Williams EJ (2007) The very stable boundary layer on nights with weak low-level jets. J Atmos Sci 64: 3068–3090CrossRefGoogle Scholar
  2. Beyrich F (1994) Sodar observations of the stable boundary layer height in relation to the nocturnal low-level jet. Meteorol Z 3: 29–34Google Scholar
  3. Bowen BM, Baars JA, Stone GL (2000) Nocturnal wind direction shear and its potential impact on pollutant transport. J Appl Meteorol 39: 437–445CrossRefGoogle Scholar
  4. Conen F, Neftel A, Schmid M, Lehmann BE (2002) N2O/Rn-222—soil flux calibration in the stable nocturnal surface layer. Geophys Res Lett. doi:10.1029/2001GL013429
  5. Haszpra L (1998) Atmospheric CO2 record from in situ measurements at K-puszta, Hungary. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USAGoogle Scholar
  6. Keller CA, Huwald H, Vollmer MK, Wenger A, Hill M, Reimann S (2010) Fiber optic distributed temperature sensing fort he determination of the nocturnal atmospheric boundary layer height. Atmos Meas Tech Discuss 3: 2723–2741. doi:10.5194/amtd-3-2723-2010 CrossRefGoogle Scholar
  7. Lehmann BE, Lehmann M (1999) Radon-220 calibration of near-surface turbulent gas transport. Geophys Res Lett 26: 607–610CrossRefGoogle Scholar
  8. Lehmann BE, Neftel A, Tarakanov SV (2001) Continuous on-line calibration of diffusive soil-atmosphere trace gas transport using vertical 220Rn- and 222Rn-activity profiles. Radiochim Acta 89: 839–843CrossRefGoogle Scholar
  9. Lehmann BE, Ihly B, Salzmann S, Conen F, Simon E (2004) An automatic static chamber for continuous Rn-220 and Rn-222 flux measurements from soil. Radiat Meas 38: 43–50CrossRefGoogle Scholar
  10. Mahrt L (1998) Stratified atmospheric boundary layers and breakdown of models. Theor Comput Fluid Dyn 11: 263–279CrossRefGoogle Scholar
  11. Malhi Y (1995) The significance of the dual solutions for heat fluxes measured by the temperature fluctuation method in stable conditions. Boundary-Layer Meteorol 74: 389–396CrossRefGoogle Scholar
  12. Moriizumi J, Nagamine K, Iida T, Ikebe Y (1996) Estimation of areal flux of atmospheric methane in an urban area of Nagoya, Japan, inferred from atmospheric radon-222 data. Atmos Environ 30: 1543–1549CrossRefGoogle Scholar
  13. Oyha Y, Neff DE, Meroney RN (1997) Turbulence structure in a stratified boundary layer under stable conditions. Boundary-Layer Meteorol 83: 139–161CrossRefGoogle Scholar
  14. Salmond JA, McKendry IG (2005) A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality. Prog Phys Geogr 29(2): 171–188CrossRefGoogle Scholar
  15. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, p 666Google Scholar
  16. Sun J, Lenschow DH, Burns SP, Banta RM, Newsom RK, Coulter R, Frasier S, Ince T, Nappo C, Balsley BB, Jensen M, Mahrt L, Miller D, Skelly B (2004) Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Boundary-Layer Meteorol 110: 255–279CrossRefGoogle Scholar
  17. Szegvary T, Conen F, Ciais P (2009) European 222Rn inventory for applied atmospheric studies. Atmos Environ 43: 1536–1539CrossRefGoogle Scholar
  18. Whittlestone S, Zahorowski W (1998) Baseline radon detectors for shipboard use: Development and deployment in the First Aerosol Characterization Experiment (ACE 1). J Geophys Res 103(D13): 16743–16751CrossRefGoogle Scholar
  19. Wilson SR, Dick AL, Fraser PJ, Whittlestone S (1997) Nitrous oxide flux estimates for south-eastern Australia. J Atmos Chem 26: 169–188CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yu Xia
    • 1
  • Franz Conen
    • 1
  • Laszlo Haszpra
    • 2
  • Zita Ferenczi
    • 2
  • Wlodek Zahorowski
    • 3
  1. 1.Institute of Environmental GeosciencesUniversity of BaselBaselSwitzerland
  2. 2.Hungarian Meteorological ServiceBudapestHungary
  3. 3.Australian Nuclear Science and Technology OrganizationKirrawee DCAustralia

Personalised recommendations