Skip to main content
Log in

Numerical Simulations of the Impacts of Land-Cover Change on Cold Fronts in South-West Western Australia

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The south-west of Western Australia has experienced significant land-cover change as well as a decline in rainfall. Given that most precipitation in the region results from frontal passages, the impact of land-cover change on the dynamics of cold fronts is explored using the Regional Atmospheric Modeling System version 6.0. Frontal simulations are evaluated against high resolution atmospheric soundings, station observations, and gridded rainfall analyses and shown to reproduce the qualitative features of cold fronts. Land-cover change results in a decrease in total frontal precipitation through a decrease in boundary-layer turbulent kinetic energy and vertically integrated moisture convergence, and an increase in wind speed within the lower boundary layer. Such processes contribute to reduced convective rainfall under current vegetation cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allan RJ, Haylock MR (1993) Circulation features associated with the winter rainfall decrease in southwestern Australia. J Clim 6: 1356–1367

    Article  Google Scholar 

  • Anthes R (1984) Enhancement of convective precipitation by mesoscale variations in vegetative covering in semiarid regions. J Clim Appl Meteorol 23: 541–554

    Article  Google Scholar 

  • AUSLIG (1990) Australian Surveying and Land Information Group. Atlas of Australian Resources: vegetation. Commonwealth of Australia, Canberra, ACT, 64 pp

  • Bates BC, Hope P, Ryan B, Smith I, Charles S (2008) Key findings from the Indian Ocean Climate Initiative and their impact on policy development in Australia. Clim Change 89: 339–354

    Article  Google Scholar 

  • Cai W, Cowan T (2006) SAM and regional rainfall in IPCC AR4 models: can anthropogenic forcing account for southwest Western Australian winter rainfall reduction. Geophys Res Lett 33: L24708. doi:10.1029/2006GL028037

    Article  Google Scholar 

  • Cai XM, Steyn DG (2000) Modelling study of sea breezes in a complex coastal environment. Atmos Environ 34: 2873–2885

    Article  Google Scholar 

  • Cotton WR, Pielke RA (2007) Human impacts on weather and climate. Cambridge University Press, New York, p 308

    Google Scholar 

  • Cotton WR, Pielke RA, Walko RL, Liston GE, Tremback CJ, Jiang H, McAnelly RL, Harrington JY, Nicholls ME, Carrio GG, McFadden JP (2003) rams 2001: current status and future directions. Meteorol Atmos Phys 82: 5–29

    Article  Google Scholar 

  • England MH, Ummenhofer CC, Santoso A (2006) Interannual rainfall extremes over southwest Western Australia linked to Indian Ocean climate variability. J Clim 19: 1948–1969

    Article  Google Scholar 

  • Esau IN, Lyons TJ (2002) Effect of sharp vegetation boundary on the convective atmospheric boundary layer. Agric For Meteorol 114: 3–13

    Article  Google Scholar 

  • Gentilli J (1971) Australian climate patterns. Thomas Nelson (Australia) Limited, Melbourne, p 285

    Google Scholar 

  • Gero AF, Pitman AJ (2006) The impact of land cover change on a simulated storm event in the Sydney basin. J Appl Meteorol Clim 45: 283–300

    Article  Google Scholar 

  • Gero AF, Pitman AJ, Narisma GT, Jacobson C, Pileke RA (2006) The impact of land cover change on storms in the Sydney Basin, Australia. Glob Planet Change 54: 57–78

    Article  Google Scholar 

  • Harrington JY (1997) The effects of radiative and microphysical processes on simulated warm and transition season Arctic stratus. Ph.D. Dissertation, Atmospheric Science Paper 637. PhD thesis, Colorado State University, 289 pp

  • Hope PK, Drosdowsky W, Nicholls N (2006) Shifts in the synoptic systems influencing southwest Western Australia. Clim Dyn 26: 751–764

    Article  Google Scholar 

  • Huang X, Lyons TJ, Smith RCG (1995) Meteorological impact of replacing native perennial vegetation with annual agricultural species. Hydrol Process 9: 645–654

    Article  Google Scholar 

  • Hutchinson MF, Stein JA, Stein JL (2009) GEODATA 9 Second Digital Elevation Model (DEM-9S) Version 3. http://www.ga.gov.au/

  • IOCI (2002) Indian Ocean Climate Initiative (IOCI)—Climate variability and change in southwest Western Australia. http://www.ioci.org.au/pdf/IOCI_TechnicalReport02.pdf. Accessed 22 Oct 2009

  • Kain JS, Fritsch JM (1993) Covective parameterisation for mesoscale models: the Kain–Fritsch scheme. In: Emannuel A, Raymond DJ (eds) The representation of cumulus convection in numerical models. American Meteorological Society, Boston, MA, pp 165–170

    Google Scholar 

  • Kala J, Lyons TJ, Abbs DJ, Nair US (2010) Numerical simulations of the impacts of land-cover change on a southern sea breeze in south-west Western Australia. Boundary-Layer Meteorol 135: 485–503

    Article  Google Scholar 

  • Kanae S, Oki T, Musiake K (2001) Impact of deforestation on regional precipitation over the Indochina peninsula. J Hydrometeorol 2: 51–70

    Article  Google Scholar 

  • Kotroni V, Lagouvardos K, Kallos G (1998) Modelling study of the IOP2 cold front of the FRONTS 87 experiment. Meteorol Appl 5: 297–306

    Article  Google Scholar 

  • Lyons TJ (2002) Clouds prefer native vegetation. Meteorol Atmos Phys 80: 131–140

    Article  Google Scholar 

  • Lyons TJ, Schwerdtfeger P, Hacker JM, Foster IJ, Smith RCG, Huang X (1993) Land–atmosphere interaction in a semiarid region: the bunny fence experiment. Bull Am Meteorol Soc 16: 551–558

    Google Scholar 

  • Lyons TJ, Smith RCG, Huang X (1996) The impact of clearing for agriculture on the surface energy balance. Int J Clim 16: 551–558

    Article  Google Scholar 

  • Ma Y, Lyons TJ (2000) Numerical simulation of a sea-breeze under dominant synoptic conditions at Perth. Meteorol Atmos Phys 73: 89–103

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid dynamics problems. Rev Geophys Space Phys 20: 851–875

    Article  Google Scholar 

  • Meyers MP, Walko RL, Harrington JY, Cotton WR (1997) New RAMS cloud microphysics parameterization. Part II: the two-moment scheme. Atmos Res 45: 3–39

    Article  Google Scholar 

  • Miao JF, Kroon LJM, de Arellano JVG, Holtslag AAM (2003) Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorol Atmos Phys 84: 157–170

    Article  Google Scholar 

  • Nair US, Hjelmfelt MR, Pielke RA (1997) Numerical simulation of the 9–10 June 1972 Balck Hills storm using CSU RAMS. Mon Weather Rev 125: 1753–1766

    Article  Google Scholar 

  • Nicholls N (2010) Local and remote causes of the southern Australian autumn-winter rainfall decline 1958–2007. Clim Dyn 34: 835–845

    Article  Google Scholar 

  • Peel DR, Pitman AJ, Hughes LA, Narisma GT, Pielke RA (2005) The impact of realistic biophysical parameters for eucalypts on the simulation of the January climate of Australia. Environ Model Softw 20: 595–612

    Article  Google Scholar 

  • Pielke RA (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39: 151–177

    Article  Google Scholar 

  • Pielke RA, Cotton WR, Walko RL, Tremback CJ, Lyons WA, Grasso LD, Nicholls ME, Moran MD, Wesley DA, Lee TJ, Copeland JH (1992) A comprehensive meteorological modelling system-rams. Meteorol Atmos Phys 49: 69–91

    Article  Google Scholar 

  • Pielke RA, Walko RL, Steyaert LT, Vidale PL, Liston GE, Lyons WA, Chase TN (1999) The influence of anthropogenic landscape changes on weather in south Florida. Mon Weather Rev 127: 1663–1673

    Article  Google Scholar 

  • Pielke RA, Adegoke J, Beltrán-Przekurat A, Hiemstra CA, Lin J, Nair US, Niyogi D, Nobis TE (2007) An overview of regional land use and land cover impacts on rainfall. Tellus B 59: 587–601

    Article  Google Scholar 

  • Pitman AJ, Narisma GT, Pielke RA, Holbrook NJ (2004) Impact of land cover change on the climate of southwest Western Australia. J Geophys Res 109: D18109

    Article  Google Scholar 

  • Pitts RO, Lyons TJ (1989) Airflow over a two-dimensional escarpment. I: observations. Q J R Meteorol Soc 115: 965–981

    Article  Google Scholar 

  • Pitts RO, Lyons TJ (1990) Airflow over a two-dimensional escarpment. II: hydrostatic flow. Q J R Meteorol Soc 116: 363–378

    Article  Google Scholar 

  • Raupach MR, Briggs PR, Haverd V, King EA, Paget M, Trudinger CM (2008) Australian Water Availability Project. CSIRO Marine and Atmospheric Research, Canberra, Australia. http://www.csiro.au/awap. Accessed 22 Oct 2009

  • Raupach MR, Briggs PR, Haverd V, King EA, Paget M, Trudinger CM (2009) Australian Water Availability Project (AWAP): CSIRO Marine and Atmospheric Research Component: Final Report for Phase 3. CAWCR Technical Report No. 013, 67 pp

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15: 1609–1625

    Article  Google Scholar 

  • Ryan BF, Katzfey JJ, Abbs DJ, Jakob C, Lohmann U, Rockel B, Rotstayn LD, Stewart RE, Szeto KK, Tselioudis G, Yau MK (2000) Simulations of a cold front by cloud-resolving, limited-area, and large-scale models, and a model evaluation using in situ and satellite observations. Mon Weather Rev 128: 3218–3235

    Article  Google Scholar 

  • Samuel JM, Verdon DC, Sivapalan M, Franks SW (2006) Influence of Indian Ocean sea surface temperature variability on southwest Western Australian winter rainfall. Water Resour Res 42: W08402. doi:10.1029/2005WR004672

    Article  Google Scholar 

  • Smagorinsky JS (1963) General circulation experiments with primitive equations. I. The basic experiment. Mon Weather Rev 91: 99–164

    Article  Google Scholar 

  • Smith IN, McIntosh P, Ansell TJ, Reason CJC, McNinnes K (2000) Southwestern Western Australian winter rainfall and its association with Indian Ocean climate variability. Int J Clim 20: 1913–1930

    Article  Google Scholar 

  • Sturman A, Tapper N (1996) Climate and weather of Australia and New Zealand. Oxford University Press, Melbourne, p 476

    Google Scholar 

  • Timbal B, Arblaster JM, Power S (2006) Attribution of the late 20th century rainfall decline in South-West Australia. J Clim 19: 2046–2067

    Article  Google Scholar 

  • van Zomeren J, van Delden A (2007) Vertically integrated moisture flux convergence as a predictor of thunderstorms. Atmos Res 83: 435–445

    Article  Google Scholar 

  • Walko RL, Cotton WR, Meyers MP, Harrington JY (1995) New RAMS cloud microphysics parameterization. Part I: the single-moment scheme. Atmos Res 38: 29–62

    Article  Google Scholar 

  • Walko RL, Band LE, Baron J, Kittel TGF, Lammers R, Lee TJ, Ojima D, Pielke RA, Taylor C, Tague C, Tremback CJ, Vidale PL (2000) Coupled atmosphere–biosphere–hydrology models for environmental modeling. J Appl Meteorol 39: 931–944

    Article  Google Scholar 

  • Wright PB (1974) Seasonal rainfall in Southwestern Australia and the general circulation. Mon Weather Rev 102: 219–232

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kala, J., Lyons, T.J. & Nair, U.S. Numerical Simulations of the Impacts of Land-Cover Change on Cold Fronts in South-West Western Australia. Boundary-Layer Meteorol 138, 121–138 (2011). https://doi.org/10.1007/s10546-010-9547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-010-9547-3

Keywords

Navigation