Skip to main content
Log in

Modelling the Effect of Tree Foliage on Sprayer Airflow in Orchards

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The effect of tree foliage on sprayer airflow through pear trees in a fruit orchard was studied and modelled in detail. A new three-dimensional (3-D) computational fluid dynamics model that integrates the 3-D canopy architecture with a local closure model to simulate the effect of the stem and branches and leaves of trees separately on airflow was developed. The model was validated with field observations made in an experimental orchard (pcfruit, Sint-Truiden, Belgium) in spring and summer 2008 and was used to investigate the airflow from three air-assisted orchard sprayers (Condor V, Duoprop and AirJet quatt). Velocity magnitudes were measured before and behind leafless and fully-leafed pear canopies across the row while the operating sprayers are passing along the row, and were compared with the simulations. The simulation results predicted the measured values well with all the local relative errors within 20%. The effect of foliar density on airflow from the three air assisted sprayers was manifested by changing the magnitude and direction of the sprayers’ air velocity behind the canopy, especially at the denser regions of the canopy and by changing the pattern of velocity decay horizontally along the jet. The developed methodology will also allow a thorough investigation of atmospheric airflow in canopy structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avissar R, Schmidt T (1998) An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J Atmos Sci 55: 2666–2689

    Article  Google Scholar 

  • Avissar R, Eloranta EW, Gurer K, Tripoli GJ (1998) An evaluation of the large-eddy simulation option of the regional atmospheric modeling system in simulating a convective boundary layer: a FIFE case study. J Atmos Sci 55: 1109–1130

    Article  Google Scholar 

  • Ayotte KW, Finnigan JJ, Raupach MR (1999) A second order closure for neutrally stratified vegetative canopy flows. Boundary-Layer Meteorol 90: 189–216. doi:10.1023/A:1001722609229

    Article  Google Scholar 

  • Balsari P, Marucco P (2004) Sprayer adjustment and vine canopy parameters affecting spray drift: the Italian experience. In: Proceedings of international conference on pesticide application for drift management: 27–29 October, Waikoloa, Hawaii, pp 109–115

  • Bertoldi G, Albertson JD, Kustas WP, Li F, Anderson MC (2007) On the opposing roles of air temperature and wind speed variability in flux estimation from remotely sensed land surface states. Water Resour Res 43:13. doi:10.1029/2007WR005911

    Google Scholar 

  • Bohrer G, Katul GG, Nathan R, Walko RL, Avissar R (2008) Effects of canopy heterogeneity, seed abscission and inertia on wind-driven dispersal kernels of tree seeds. J Ecol 96: 569–580. doi:10.1111/j.1365-2745.2008.01368.x

    Article  Google Scholar 

  • Bohrer G, Katul GG, Nathan R, Walko RL, Avissar R (2009) Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Boundary-Layer Meteorol 132: 351–382. doi:10.1007/s10546-009-9404-4

    Article  Google Scholar 

  • Bou-Zeid E, Overney J, Rogers BD, Parlange MB (2009) The effects of building representation and clustering in large-eddy simulations of flows in urban canopies. Boundary-Layer Meteorol 132: 415–436. doi:10.1007/s10546-009-9410-6

    Article  Google Scholar 

  • Bruse M, Fleer H (1998) Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ Model Softw 13: 373–384. doi:10.1016/S1364-8152(98)00042-5

    Article  Google Scholar 

  • Cassiani M, Katul GG, Albertson JD (2008) The effects of canopy leaf area index on airflow across forest edges: Large-eddy Simulation and analytical results. Boundary-Layer Meteorol 126: 433–460. doi:10.1007/s10546-007-9242-1

    Article  Google Scholar 

  • Christiansen JE (1941) The uniformity of application of water by sprinkler systems. Agric Eng 22: 89–92

    Google Scholar 

  • Cross JV, Ridout MS, Walklate PJ (1997) Adjustment of axial fan sprayers to orchard structure. Bull OILB/SROP 20: 86–94

    Google Scholar 

  • Da Silva A, Sinfort C, Tinet C, Pierrat D, Huberson S (2006) A Lagrangian model for spray behaviour within vine canopies. Aerosol Sci 37: 658–674. doi:10.1016/j.jaerosci.2005.05.016

    Article  Google Scholar 

  • de Langre E (2008) Effects of wind on plants. Annu Rev Fluid Mech 40: 141–168. doi:10.1146/annurev.fluid.40.111406.102135

    Article  Google Scholar 

  • Delele MA, De Moor A, Verboven P, Ramon H, Sonck B, Nicolaï BM (2004) CFD modelling of air flow patterns from an air assisted orchard sprayer. Asp Appl Biol 71: 303–310

    Google Scholar 

  • Delele MA, De Moor A, Sonck B, Ramon H, Nicolaï BM, Verboven P (2005) Modelling and validation of the air flow generated by a cross flow air sprayer as affected by travel speed and fan speed. Biosyst Eng 92: 165–174. doi:10.1016/j.biosystemseng.2005.05.018

    Article  Google Scholar 

  • Dupont S, Brunet Y (2008) Influence of foliar density profile on canopy flow: a large-eddy simulation study. Agric For Meteorol 148: 976–990. doi:10.1016/j.agrformet.2008.01.014

    Article  Google Scholar 

  • Endalew AM, Hertog M, Delele MA, Baetens K, Vercammen J, Gomand A, Baelmans M, Ramon H, Nicolaï BM, Verboven P (2007) 3-D measurement and representation of pear canopy for modelling air-assisted orchard spraying. Commun Agric Appl Biol Sci 72/1: 245–248

    Google Scholar 

  • Endalew AM, Hertog M, Delele MA, Baetens K, Persoon T, Baelmans M, Ramon H, Nicolaï BM, Verboven P (2009a) CFD modelling and wind tunnel validation of airflow through 3-d plant canopies using 3-d canopy architecture. Int J Heat Fluid Flow 30: 356–368. doi:10.1016/j.ijheatfluidflow.2008.12.007

    Article  Google Scholar 

  • Endalew AM, Hertog M, Gebrehiwot Gebreslasie M, Baelmans M, Ramon H, Nicolaï BM, Verboven P (2009b) Modelling airflow within model plant canopies using an integrated approach. Comput Electron Agric 66: 9–24. doi:10.1016/j.compag.2008.11.002

    Article  Google Scholar 

  • Endalew AM, Debaer C, Rutten N, Delele MA, Ramon H, Nicolaï BM, Verboven P (2010a) A new integrated modelling approach towards air-assisted orchard spraying—Part I: model development and effect of wind speed and direction. Comput Electron Agric 71: 137–147. doi:10.1016/j.compag.2009.11.005

    Article  Google Scholar 

  • Endalew AM, Debaer C, Rutten N, Delele MA, Ramon H, Nicolaï BM, Verboven P (2010b) A new integrated modelling approach towards air-assisted orchard spraying—Part II: validation with different machine types. Comput Electron Agric 71: 128–136. doi:10.1016/j.compag.2009.11.007

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–571. doi:10.1146/annurev.fluid.32.1.519

    Article  Google Scholar 

  • Foudhil H, Brunet Y, Caltagirone J-P (2005) A fine-scale k–ε model for atmospheric flow over heterogeneous landscapes. Environ Fluid Mech 5: 247–265. doi:10.1007/s10652-004-2124-x

    Article  Google Scholar 

  • Hislop EC (1991) Air-assisted crop spraying: an introductory review. In: Proceedings of the BCPC symposium on air-assisted spraying in crop protection, 7–9 January, Swansea, UK, pp 3–14

  • Huang J, Cassiani M, Albertson JD (2009) The effects of vegetation density on coherent turbulent structures within the canopy sublayer: a Large-Eddy Simulation study. Boundary-Layer Meteorol 133: 253–275. doi:10.1007/s10546-009-9423-1

    Article  Google Scholar 

  • Janssen S, Dumont G, Fierens F, Mensink C (2008) Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos Environ 42: 4884–4903. doi:10.1016/j.atmosenv.2008.02.043

    Article  Google Scholar 

  • Katul GG, Mahrt L, Poggi D, Sanz C (2004) One- and two-equation models for canopy turbulence. Boundary-Layer Meteorol 113: 81–109. doi:10.1023/B:BOUN.0000037333.48760.e5

    Article  Google Scholar 

  • Laadhari F et al (1994) Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys Fluids 10: 3218–3220. doi:10.1063/1.868052

    Article  Google Scholar 

  • Launder BE, Spalding DB (1994) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3: 269–289. doi:10.1016/0045-7825(74)90029-2

    Article  Google Scholar 

  • Liu J, Chen JM, Black TA, Novak MD (1996) Eε modelling of turbulent air-flow downwind of a model forest edge. Boundary-Layer Meteorol 77: 21–44. doi:10.1007/BF00121857

    Article  Google Scholar 

  • Marucco P, Tamagnone M, Balsari P (2008) Study of air velocity adjustment to maximize spray deposition in peach orchards. Agric Eng Int the CIGR Ejournal. Manuscript ALNARP 08 009. vol X, 13 pp

  • Meyers T, Paw UKT (1986) Testing a higher order closure model for modelling airflow within and above plant canopies. Boundary-Layer Meteorol 37: 297–311. doi:10.1007/BF00122991

    Article  Google Scholar 

  • Mound LA, Halsey SH (1978) Whitefly of the world. A systematic catalogue of the Aleyrodidae (Homoptera) with host plant and natural enemy data. British Museum (Natural History), Wiley, 340 pp

  • Ni W (1997) A coupled transilience model for turbulent air flow within plant canopies and the planetary boundary layer. Agric For Meteorol 86: 77–105. doi:10.1016/S0168-1923(96)02403-3

    Article  Google Scholar 

  • Patton EG, Katul GG (2009) Turbulent pressure and velocity perturbations induced by gentle hills covered with sparse and dense canopies. Boundary-Layer Meteorol 133: 189–217. doi:10.1007/s10546-009-9427-x

    Article  Google Scholar 

  • Pergher G (2005) Improving vineyard sprayer calibration—air flow rate and forward speed. Annu Rev Agric Eng 4: 197–204

    Google Scholar 

  • Pergher G, Gubiani R (1995) The effect of spray application rate and airflow rate on foliar deposition in a hedgerow vineyard. J Agric Eng Res 61(3): 205–216. doi:10.1006/jaer.1995.1048

    Article  Google Scholar 

  • Pergher G, Petris R (2008) The effect of air flow rate on spray deposition in a guyot-trained vineyard. Agric Eng Int the CIGR Ejournal. Manuscript ALNARP 08 010. vol X, 15 pp

  • Pergher G, Gubaiani R, Tonetto G (1997) Foliar deposition and pesticide losses from three air-assisted sprayers in a hedgerow vineyard. Crop Prot 16: 25–33. doi:10.1016/S0261-2194(96)00054-3

    Article  Google Scholar 

  • Phattaralerphong J, Sinoquet H (2005) A method for 3-D reconstruction of tree crown volume from photographs: assessment with 3-D-digitized plants. Tree Physiol 25: 1229–1242. doi:10.1093/treephys/25.10.1229

    Google Scholar 

  • Phattaralerphong J, Sathornkich J, Sinoquet H (2006) A photographic gap fraction method for estimating leaf area of isolated trees: assessment with 3-D digitized plants. Tree Physiol 26: 1123–1136. doi:10.1093/treephys/26.9.1123

    Google Scholar 

  • Pielke RA, Cotton WR, Walko RL, Tremback CJ, Lyons WA, Grasso LD, Nicholls ME, Moran MD, Wesley DA, Lee TJ, Copeland JH (1992) A comprehensive meteorological modeling system—RAMS. Meteorol Atmos Phys 49: 69–91. doi:10.1007/BF01025401

    Article  Google Scholar 

  • Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG (2004) The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol 111: 565–587. doi:10.1023/B:BOUN.0000016576.05621.73

    Article  Google Scholar 

  • Raupach MR, Lu H (2004) Representation of land-surface processes in Aeolian transport models. Environ Model Softw 19: 93–112. doi:10.1016/S1364-8152(03)00113-0

    Article  Google Scholar 

  • Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol 22: 79–90. doi:10.1007/BF00128057

    Article  Google Scholar 

  • Raupach MR, Thom AS (1981) Turbulence in and above plant canopies. Annu Rev Fluid Mech 13: 97–129. doi:10.1146/annurev.fl.13.010181.000525

    Article  Google Scholar 

  • Samaali M, Courault D, Bruse M, Olioso A, Occelli R (2007) Analysis of a 3-D boundary layer model at local scale: validation on soybean surface radiative measurements. Atmos Res 85: 183–198. doi:10.1016/j.atmosres.2006.12.005

    Article  Google Scholar 

  • Sanz C (2003) A note on k-ε modelling of vegetation canopy air-flows. Boundary-Layer Meteorol 108: 191–197. doi:10.1023/A:1023066012766

    Article  Google Scholar 

  • Shaw RH, Patton EG (2003) Canopy element influences on resolved- and subgrid-scale energy within a large-eddy simulation. Agric For Meteorol 115: 5–17. doi:10.1016/S0168-1923(02)00165-X

    Article  Google Scholar 

  • Shaw RH, Schumann U (1992) Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol 61: 47–64. doi:10.1007/BF02033994

    Article  Google Scholar 

  • Sinoquet H, Sonohat G, Phattaralerphong J, Godin C (2005) Foliage randomness and light interception in 3-D digitized trees: an analysis from multiscale discretization of the canopy. Plant Cell Environ 28: 1158–1170. doi:10.1111/j.1365-3040.2005.01353.x

    Article  Google Scholar 

  • Thom AS (1972) Momentum, mass and heat exchange of vegetation. Q J Roy Meteorol Soc 98: 124–134. doi:10.1002/qj.49709841510

    Article  Google Scholar 

  • Tsay J-R, Liang L-S, Lu L-H (2004) Evaluation of an air-assisted boom spraying system under a no-canopy condition using CFD simulation. Trans ASAE 47(6): 1887–1897

    Google Scholar 

  • Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics. The finite volume method. Prentice-Hall, Englewood Cliffs, p 257

    Google Scholar 

  • Walklate PJ, Weiner KL, Parkin CS (1996) Analysis of and experimental measurements made on a moving air-assisted sprayer with two-dimensional air-jets penetrating a uniform crop canopy. J Agric Eng Res 63: 365–377. doi:10.1006/jaer.1996.0039

    Article  Google Scholar 

  • Walklate PJ, Cross JV, Richardson GM, Murray RA, Baker DE (2002) Comparison of different spray volume deposition models using LIDAR measurements of apple orchards. Biosyst Eng 8: 253–267. doi:10.1006/bioe.2002.0082

    Article  Google Scholar 

  • Wieringa J (1992) Updating the Davenport roughness classification. J Wind Eng Ind Aerodyn 41: 357–368. doi:10.1016/0167-6105(92)90434-C

    Article  Google Scholar 

  • Wilson NR, Shaw RH (1977) A higher-order closure model for canopy flow. J Appl Meteorol 16: 1197–1205. doi:10.1175/1520-0450(1977)016<1206:TEORIO>2.0.CO;2

    Article  Google Scholar 

  • Wilson JD, Finntgan JJ, Raupach MR (1998) A first-order closure for disturbed plant-canopy flows, and its application to winds in a canopy on a ridge. Q J Roy Meteorol Soc 124: 705–732. doi:10.1002/qj.49712454704

    Google Scholar 

  • Yang B, Shaw RH, Paw UKT (2006) Wind loading on trees across a forest edge: a large eddy simulation. Agric For Meteorol 141: 133–146. doi:10.1016/j.agrformet.2006.09.006

    Article  Google Scholar 

  • Yue W, Parlange MB, Meneveau C, Zhu W, van Hout R, Katz J (2007) Large-eddy simulation of plant canopy flows using plant-scale representation. Boundary-Layer Meteorol 124: 183–203. doi:10.1007/s10546-007-9173-x

    Article  Google Scholar 

  • Yue W, Meneveau C, Parlange MB, Zhu W, Kang HS, Katz J (2008) Turbulent kinetic energy budgets in a model canopy: comparisons between LES and wind-tunnel experiments. Environ Fluid Mech 8: 73–95. doi:10.1007/s10652-007-9049-0

    Article  Google Scholar 

  • Zeng P, Takahashi H (2000) A first-order closure model for the wind flow within and above vegetation canopies. Agric For Meteorol 103: 301–313. doi:10.1016/S0168-1923(00)00133-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayenew Melese Endalew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melese Endalew, A., Debaer, C., Rutten, N. et al. Modelling the Effect of Tree Foliage on Sprayer Airflow in Orchards. Boundary-Layer Meteorol 138, 139–162 (2011). https://doi.org/10.1007/s10546-010-9544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-010-9544-6

Keywords

Navigation