Boundary-Layer Meteorology

, Volume 134, Issue 3, pp 387–409 | Cite as

Synoptic Controls on Boundary-Layer Characteristics

  • Victoria A. SinclairEmail author
  • Stephen E. Belcher
  • Suzanne L. Gray


We report the characteristics of the three-dimensional, time evolving, atmospheric boundary layer that develops beneath an idealised, dry, baroclinic weather system. The boundary-layer structure is forced by thermal advection associated with the weather system. Large positive heat fluxes behind the cold front drive a vigorous convective boundary layer, whereas moderate negative heat fluxes in the warm sector between the cold and warm fronts generate shallow, stably stratified or neutral boundary layers. The forcing of the boundary-layer structure is quantified by forming an Eulerian mass budget integrated over the depth of the boundary layer. The mass budget indicates that tropospheric air is entrained into the boundary layer both in the vicinity of the high-pressure centre, and behind the cold front. It is then transported horizontally within the boundary layer and converges towards the cyclone’s warm sector, whence it is ventilated out into the troposphere. This cycling of air is likely to be important for the ventilation of pollution out of the boundary layer, and for the transformation of the properties of large-scale air masses.


Boundary-layer structure Mass budgets Synoptic scale Ventilation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson DS, Belcher SE, Hoskins BJ, Plant RS (2006) Boundary-layer friction in midlatitude cyclones. Q J Roy Meteorol Soc 132: 101–124CrossRefGoogle Scholar
  2. Beare RJ (2007) Boundary layer mechanisms in extratropical cyclones. Q J Roy Meteorol Soc 133: 503–515CrossRefGoogle Scholar
  3. Becker A, Kraus H, Ewenz CM (1996) Frontal substructures within the planetary boundary layer. Boundary-Layer Meteorol 78(1): 165–190CrossRefGoogle Scholar
  4. Bond NA, Fleagle RG (1988) Prefrontal and postfrontal boundary layer processes over the ocean. Mon Weather Rev 116: 1257–1273CrossRefGoogle Scholar
  5. Boutle IA, Beare RJ, Belcher SE, Plant RS (2007) A note on boundary layer friction in baroclinic cyclones. Q J Roy Meteorol Soc 133: 2137–2141CrossRefGoogle Scholar
  6. Boutle IA, Beare RJ, Belcher SE, Brown AR, Plant RS (2010) The moist boundary layer under the mid-latitude weather system. Boundary-layer Meteorol. doi: 10.1007/s10546-009-9452-9
  7. Browning KA (1985) Conceptual models of precipitating systems. Meteorol Mag 114(1359): 293–319Google Scholar
  8. Brümmer B (1997) Boundary layer mass, water, and heat budgets in wintertime cold-air outbreaks from the Arctic sea ice. Mon Weather Rev 125(8): 1824–1837CrossRefGoogle Scholar
  9. Businger JA, Charnock H (1983) Boundary layer structure in relation to larger-scale flow: some remarks on the JASIN observations. Phil Trans Roy Soc Lond A 308(1503): 445–449CrossRefGoogle Scholar
  10. Carlson TN (1980) Airflow through mid-latitude cyclones and the comma cloud pattern. Mon Weather Rev 108: 1498–1509CrossRefGoogle Scholar
  11. Carson DJ (1973) The development of a dry inversion-capped convectively unstable boundary layer. Q J Roy Meteorol Soc 99(421): 450–467CrossRefGoogle Scholar
  12. Cotton WR, Alexander GD, Hertenstein R, Walko RL, McAnelly RL, Nicholls M (1995) Cloud venting—a review and some new global estimates. Earth Sci Rev 39: 169–206CrossRefGoogle Scholar
  13. Driedonks AGM, Tennekes H (1984) Entrainment effects in the well-mixed atmospheric boundary layer. Boundary-Layer Meteorol 30(1): 75–105CrossRefGoogle Scholar
  14. Ekman VW (1905) On the influence of the Earth’s rotation on ocean currents. Arkiv Math Astron Fys 2: 1–53Google Scholar
  15. Fedorovich E (1995) Modeling the atmospheric convective boundary layer within a zero-order jump approach: an extended theoretical framework. J Appl Meteorol 34(9): 1916–1928CrossRefGoogle Scholar
  16. Fleagle RG, Nuss WA (1985) The distribution of surface heat fluxes and boundary layer divergence in mid-latitude ocean storms. J Atmos Sci 42: 784–799CrossRefGoogle Scholar
  17. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, UK, p 316Google Scholar
  18. Harrold TW (1973) Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Q J Roy Meteorol Soc 99(420): 232–251CrossRefGoogle Scholar
  19. Holt T, Raman S (1990) Marine boundary layer structure and circulation in the region of offshore development of a cyclone during GALE. Mon Weather Rev 118: 392–410CrossRefGoogle Scholar
  20. Holtslag AAM, Boville BA (1993) Local versus nonlocal boundary layer diffusion in a global climate model. J Climate 6: 1825–1842CrossRefGoogle Scholar
  21. Hoskins BJ, Simmons AJ (1975) A multi-layer spectral model and the semi-implicit method. Q J Roy Meteorol Soc 101: 627–655CrossRefGoogle Scholar
  22. Keyser D, Anthes RA (1982) The influence of planetary boundary layer physics on frontal structure in the Hoskins–Bretherton horizontal shear model. J Atmos Sci 39: 1783–1802CrossRefGoogle Scholar
  23. Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol 17: 187–202CrossRefGoogle Scholar
  24. Neiman PJ, Shapiro MA, Donall EG, Kreitzberg CW (1990) Diabatic modification of an extratropical marine cyclone warm sector by cold underlying water. Mon Weather Rev 118: 1576–1590CrossRefGoogle Scholar
  25. Nuss WA (1989) Air-sea interaction influences on the structure and intensification of an idealized marine cyclone. Mon Weather Rev 117(2): 351–369CrossRefGoogle Scholar
  26. Persson POG, Hare JE, Fairall CW, Otto WD (2005) Air-sea interaction processes in warm and cold sectors of extratropical cyclonic storms observed during FASTEX. Q J Roy Meteorol Soc 131: 877–912CrossRefGoogle Scholar
  27. Plant RS, Belcher SE (2007) Numerical simulations of baroclinic waves with a parameterized boundary layer. J Atmos Sci 64: 4383–4399CrossRefGoogle Scholar
  28. Pollard RT, Guymer TH, Taylor PK (1983) Summary of the JASIN 1978 field experiment. Phil Trans R Soc Lond A 308(1503): 221–230CrossRefGoogle Scholar
  29. Reed RJ, Danielsen EF (1959) Fronts in the vicinity of the tropopause. Arch Meteorol Geophys Bioklim 11: 1–17CrossRefGoogle Scholar
  30. Schultz DM (2001) Reexamining the cold conveyor belt. Mon Weather Rev 129: 2205–2225CrossRefGoogle Scholar
  31. Shapiro MA, Keyser DA (1990) Fronts, jet streams and the tropopause. In: Newton CW, Holopainen EO Extratropical cyclones: the Erik Palmén memorial volume. American Meteorological Society, BostonGoogle Scholar
  32. Simmons AJ, Hoskins BJ (1978) The lifecycles of some nonlinear baroclinic waves. J Atmos Sci 35: 414–432CrossRefGoogle Scholar
  33. Simmons AJ, Hoskins BJ (1980) Barotropic influences on the growth and decay of nonlinear baroclinic waves. J Atmos Sci 37(8): 1679–1684CrossRefGoogle Scholar
  34. Sinclair VA (2008) Boundary-layer ventilation by baroclinic life cycles. Ph.D. thesis, University of Reading, UKGoogle Scholar
  35. Sinclair VA, Gray SL, Belcher SE (2008) Boundary-layer ventilation by baroclinic life cycles. Q J Roy Meteorol Soc 134: 1409–1424CrossRefGoogle Scholar
  36. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, p 666Google Scholar
  37. Thorncroft CD, Hoskins BJ, McIntyre ME (1993) Two paradigms of baroclinic-wave life-cycle behaviour. Q J Roy Meteorol Soc 119: 17–55CrossRefGoogle Scholar
  38. Troen IB, Mahrt L (1986) A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorol 37: 129–148CrossRefGoogle Scholar
  39. Vogelezang DHP, Holtslag AAM (1996) Evaluation and model impacts of alternative boundary-layer height formulations. Boundary-Layer Meteorol 81(3): 245–269CrossRefGoogle Scholar
  40. Young MV, Monk GA, Browning KA (1987) Interpretation of satellite imagery of a rapidly deepening cyclone. Q J Roy Meteorol Soc 113: 1089–1115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Victoria A. Sinclair
    • 1
    • 2
    Email author
  • Stephen E. Belcher
    • 1
  • Suzanne L. Gray
    • 1
  1. 1.Department of MeteorologyUniversity of ReadingReadingUK
  2. 2.University of HelsinkiHelsinkiFinland

Personalised recommendations