Skip to main content
Log in

The Effects of Building Representation and Clustering in Large-Eddy Simulations of Flows in Urban Canopies

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We perform large-eddy simulations of neutral atmospheric boundary-layer flow over a cluster of buildings surrounded by relatively flat terrain. The first investigated question is the effect of the level of building detail that can be included in the numerical model, a topic not yet addressed by any previous study. The simplest representation is found to give similar results to more refined representations for the mean flow, but not for turbulence. The wind direction on the other hand is found to be important for both mean and turbulent parameters. As many suburban areas are characterised by the clustering of buildings and homes into small areas separated by surfaces of lower roughness, we look at the adjustment of the atmospheric surface layer as it flows from the smoother terrain to the built-up area. This transition has unexpected impacts on the flow; mainly, a zone of global backscatter (energy transfer from the turbulent eddies to the mean flow) is found at the upstream edge of the built-up area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson JD, Parlange MB (1999a) Natural integration of scalar fluxes from complex terrain. Adv Water Resour 23(3): 239–252

    Article  Google Scholar 

  • Albertson JD, Parlange MB (1999b) Surface length scales and shear stress: implications for land–atmosphere interaction over complex terrain. Water Resour Res 35(7): 2121–2132

    Article  Google Scholar 

  • Albertson JD, Kustas WP, Scanlon TM (2001) Large-eddy simulation over heterogeneous terrain with remotely sensed land surface conditions. Water Resour Res 37(7): 1939–1953

    Article  Google Scholar 

  • Avissar R (1995) Recent advances in the representation of land–atmosphere interactions in general-circulation models. Rev Geophys 33: 1005–1010

    Article  Google Scholar 

  • Belcher SE, Jerram N, Hunt JCR (2003) Adjustment of a turbulent boundary layer to a canopy of roughness elements. J Fluid Mech 488: 369–398

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange MB (2004) Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour Res 40(2): W02505. doi:10.1029/2003WR002475

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange MB (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17(2): 025105. doi:10.1063/1.1839152

    Article  Google Scholar 

  • Bou-Zeid E, Parlange MB, Meneveau C (2007) On the parameterization of surface roughness at regional scales. J Atmos Sci 64(1): 216–227. doi:10.1175/JAS3826.1

    Article  Google Scholar 

  • Bou-Zeid E, Vercauteren N, Parlange MB, Meneveau C (2008) Scale dependence of subgrid-scale model coefficients: an a priori study. Phys Fluids 20(11): 115106

    Article  Google Scholar 

  • Bradbrook KF, Lane SN, Richards KS, Biron PM, Roy AG (2000) Large eddy simulation of periodic flow characteristics at river channel confluences. J Hydraul Res 38(3): 207–215

    Article  Google Scholar 

  • Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35: 469–496

    Article  Google Scholar 

  • Brutsaert W (1998) Land-surface water vapor and sensible heat flux: spatial variability, homogeneity, and measurement scales. Water Resour Res 34(10): 2433–2442. doi:10.1029/98WR01340

    Article  Google Scholar 

  • Cai XM (1999) Large-eddy simulation of the convective boundary layer over an idealized patchy urban surface. Q J Roy Meteorol Soc 125(556): 1427–1444

    Article  Google Scholar 

  • Calhoun R, Gouveia F, Shinn J, Chan S, Stevens D, Lee R, Leone J (2005) Flow around a complex building: experimental and large-eddy simulation comparisons. J Appl Meteorol 44(5): 571–590

    Article  Google Scholar 

  • Celani A (2007) The frontiers of computing in turbulence: challenges and perspectives. J Turbul 8(1): 1–9

    Article  Google Scholar 

  • Chen J, Meneveau C, Katz J (2006) Scale interactions of turbulence subjected to a straining–relaxation– destraining cycle. J Fluid Mech 562: 123–150

    Article  Google Scholar 

  • Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 104(2): 229–259

    Article  Google Scholar 

  • Coceal O, Belcher SE (2004) A canopy model of mean winds through urban areas. Q J Roy Meteorol Soc 130(599): 1349–1372

    Article  Google Scholar 

  • Dupont S, Mestayer PG (2006) Parameterization of the urban energy budget with the submesoscale soil model. J Appl Meteorol Clim 45(12): 1744–1765

    Article  Google Scholar 

  • Eliasson I, Offerle B, Grimmond CSB, Lindqvist S (2006) Wind fields and turbulence statistics in an urban street canyon. Atmos Environ 40(1): 1–16

    Article  Google Scholar 

  • Emeis S (2004a) Parameterization of turbulent viscosity over orography. Meteorol Z 13(1): 33–38

    Article  Google Scholar 

  • Emeis S (2004b) Vertical wind profiles over an urban area. Meteorol Z 13(5): 353–359

    Article  Google Scholar 

  • Emeis S, Turk M (2004) Frequency distributions of the mixing height over an urban area from SODAR data. Meteorol Z 13(5): 361–367

    Article  Google Scholar 

  • Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7): 1760–1765

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived, from analysis of surface form. J Appl Meteorol 38(9): 1262–1292

    Article  Google Scholar 

  • Grimmond CSB, King TS, Roth M, Oke TR (1998) Aerodynamic roughness of urban areas derived from wind observations. Boundary-Layer Meteorol 89(1): 1–24

    Article  Google Scholar 

  • Harman IN, Belcher SE (2006) The surface energy balance and boundary layer over urban street canyons. Q J Roy Meteorol Soc 132(621): 2749–2768

    Article  Google Scholar 

  • Kanda M, Moriwaki R, Kasamatsu F (2004) Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol 112(2): 343–368

    Article  Google Scholar 

  • Keylock CJ, Hardy RJ, Parsons DR, Ferguson RI, Lane SN, Richards KS (2005) The theoretical foundations and potential for large-eddy simulation (LES) in fluvial geomorphic and sedimentological research. Earth Sci Rev 71(3–4): 271–304

    Article  Google Scholar 

  • Kleissl J, Kumar V, Meneveau C, Parlange MB (2006) Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: validation in stable and unstable conditions. Water Resour Res 42(6): W06D10. doi:10.1029/2005WR004685

    Article  Google Scholar 

  • Kumar V, Kleissl J, Meneveau C, Parlange MB (2006) Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: atmospheric stability and scaling issues. Water Resour Res 42(6): W06D09. doi:10.1029/2005WR004651

    Article  Google Scholar 

  • Lee XH, Black TA (1993) Atmospheric-turbulence within and above a Douglas–Fir stand. 1. Statistical properties of the velocity-field. Boundary-Layer Meteorol 64(1-2): 149–174

    Article  Google Scholar 

  • Liberzon A, Luthi B, Guala M, Kinzelbach W, Tsinober A (2005) Experimental study of the structure of flow regions with negative turbulent kinetic energy production in confined three-dimensional shear flows with and without buoyancy. Phys Fluids 17(9): 095110

    Article  Google Scholar 

  • Lilly DK (1967) The representation of small scale turbulence in numerical simulation experiments. In: IBM scientific computing symposium on environmental sciences, White Plains, New York, pp 195–209

  • Lin CL, Glendening JW (2002) Large eddy simulation of an inhomogeneous atmospheric boundary layer under neutral conditions. J Atmos Sci 59(16): 2479–2497

    Article  Google Scholar 

  • Lyn DA, Rodi W (1994) The flapping shear-layer formed by flow separation from the forward corner of a square cylinder. J Fluid Mech 267: 353–376

    Article  Google Scholar 

  • Masson V (2000) A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorol 94(3): 357–397

    Article  Google Scholar 

  • Meinders ER, Hanjalic K (1999) Vortex structure and heat transfer in turbulent flow over a wall-mounted matrix of cubes. Int J Heat Fluid Flow 20(3): 255–267

    Article  Google Scholar 

  • Meinders ER, Hanjalic K (2002) Experimental study of the convective heat transfer from in-line and staggered configurations of two wall-mounted cubes. Int J Heat Mass Transf 45(3): 465–482

    Article  Google Scholar 

  • Meneveau C, Katz J (2000) Scale-invariance and turbulence models for large-eddy simulation. Annu Rev Fluid Mech 32: 1–32

    Article  Google Scholar 

  • Meneveau C, Lund TS, Cabot WH (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319: 353–385

    Article  Google Scholar 

  • Moeng CH, Dudhia J, Klemp J, Sullivan P (2007) Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon Weather Rev 135(6): 2295–2311

    Article  Google Scholar 

  • Molod A, Salmun H, Waugh DW (2003) A new look at modeling surface heterogeneity: extending its influence in the vertical. J Hydrometeorol 4(5): 810–825

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the ground layer of the atmosphere (in Russian), vol 151. Trudy Geofizicheskogo Instituta, Akademiya Nauk SSSR, pp 163–187

  • Orszag SA, Pao YH (1974) Numerical computation of turbulent shear flows. Adv Geophys 18(A): 224–236

    Google Scholar 

  • Parlange MB, Brutsaert W (1993) Regional shear-stress of broken forest from radiosonde wind profiles in the unstable surface-layer. Boundary-Layer Meteorol 64(4): 355–368

    Article  Google Scholar 

  • Piomelli U (1999) Large-eddy simulation: achievements and challenges. Prog Aerosp Sci 35(4): 335–362

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge, p 771

    Google Scholar 

  • Porte-Agel F, Meneveau C, Parlange MB (2000) A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415: 261–284

    Article  Google Scholar 

  • Roberts SM, Oke TR, Grimmond CSB, Voogt JA (2006) Comparison of four methods to estimate urban heat storage. J Appl Meteorol Clim 45(12): 1766–1781

    Article  Google Scholar 

  • Rotach MW, Fisher B, Piringer M (2002) COST 715 workshop on urban boundary layer parameterizations. Bull Am Meteorol Soc 83(10): 1501–1504

    Article  Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J Roy Meteorol Soc 126(564): 941–990

    Article  Google Scholar 

  • Roth M, Salmond JA, Satyanarayana ANV (2006) Methodological considerations regarding the measurement of turbulent fluxes in the urban roughness sublayer: the role of scintillometery. Boundary-Layer Meteorol 121(2): 351–375

    Article  Google Scholar 

  • Roulet YA, Martilli A, Rotach MW, Clappier A (2005) Validation of an urban surface exchange parameterization for mesoscale models—1D case in a street canyon. J Appl Meteorol 44(9): 1484–1498

    Article  Google Scholar 

  • Sagaut P (2003) Large eddy simulation for incompressible flows. Springer, Berlin, p 426

    Google Scholar 

  • Shaw RH (1977) Secondary wind speed maxima inside plant canopies. J Appl Meteorol 16(5): 514–521

    Article  Google Scholar 

  • Shen L, Yue DKP (2001) Large-eddy simulation of free-surface turbulence. J Fluid Mech 440: 75–116

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations: I. the basic experiment. Mon Weather Rev 91: 99–164

    Article  Google Scholar 

  • Stoll R, Porte-Agel F (2006) Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour Res 42(1): W01409

    Article  Google Scholar 

  • Tominaga Y, Mochida A, Murakami S, Sawaki S (2008) Comparison of various revised k-[epsilon] models and LES applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer. J Wind Eng Ind Aerodyn 96(4): 389–411

    Article  Google Scholar 

  • Tseng YH, Meneveau C, Parlange MB (2006) Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation. Environ Sci Technol 40(8): 2653–2662

    Article  Google Scholar 

  • Wood N (2000) Wind flow over complex terrain: a historical perspective and the prospect for large-eddy modelling. Boundary-Layer Meteorol 96(1-2): 11–32

    Article  Google Scholar 

  • Xie ZT, Castro IP (2006) LES and RANS for turbulent flow over arrays of wall-mounted obstacles. Flow Turbul Combust 76(3): 291–312

    Article  Google Scholar 

  • Xie ZT, Li JC (2005) A numerical study for turbulent flow and thermal influence over inhomogenous canopy of roughness elements. Environ Fluid Mech 5(6): 577–597

    Article  Google Scholar 

  • Yue WS, Meneveau C, Parlange MB, Zhu WH, van Hout R, Katz J (2007a) A comparative quadrant analysis of turbulence in a plant canopy. Water Resour Res 43(5): W05422. doi:10.1029/2006WR005583

    Article  Google Scholar 

  • Yue WS, Parlange MB, Meneveau C, Zhu WH, van Hout R, Katz J (2007b) Large-eddy simulation of plant canopy flows using plant-scale representation. Boundary-Layer Meteorol 124(2): 183–203

    Article  Google Scholar 

  • Zhang N, Jiang WM, Miao SG (2006) A large eddy simulation on the effect of buildings on urban flows. Wind Struct 9(1): 23–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elie Bou-Zeid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bou-Zeid, E., Overney, J., Rogers, B.D. et al. The Effects of Building Representation and Clustering in Large-Eddy Simulations of Flows in Urban Canopies. Boundary-Layer Meteorol 132, 415–436 (2009). https://doi.org/10.1007/s10546-009-9410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-009-9410-6

Keywords

Navigation