Skip to main content
Log in

Spatial Variation of Sea-Spray Fluxes over a Mediterranean Coastal Zone Using a Sea-State Model

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We first deal with sea-spray flux estimates for short fetch conditions in coastal Mediterranean areas. To this end, a sea-state dependent model for the whitecap fraction was included in three different formulations for the sea-spray source function. A comparison with the sea-spray fluxes, calculated on the basis of aerosol size distributions measured at the island of Porquerolles located south off the French Riviera, evaluates the predictions of different whitecap dependant flux formulations. Then we deal with the spatial distribution of the whitecap fraction and the sea-spray fluxes in the study area. To achieve this, a whitecap dependant flux formulation was forced by a wave numerical model that was implemented in the study area. Experimental results on wave conditions have been used to adjust the model in the Mediterranean coastal area. Numerical simulations of wave and whitecap coverage have been carried out during typical regional wind events, and they show a nonhomogeneous distribution of the sea-surface production over the northern Mediterranean as a consequence of the spatial variation of the sea state. In particular, we note the occurrence of a narrow band of high sea-surface production following the northern coast and along the east part of the Gulf of Lions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas EL (1998) A new sea spray generation function for wind speeds up to 32 m s−1. J Phys Oceanogr 28: 2175–2184. doi:10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2

    Article  Google Scholar 

  • Blanchard DC (1963) The electrification of the atmosphere by particles from bubbles in the sea. Progress in Oceanography, vol 1. Pergamon Press, New York, pp 71–202

    Google Scholar 

  • Blot R, Piazzola J, Tedeschi G (2008) A model for the spatial distribution of the extinction due to aerosol particles on the Mediterranean coasts. Opt Eng 47: 026004. doi:10.1117/1.2870087

    Article  Google Scholar 

  • Bowyer PA, Woolf DK, Monahan EC (1990) Temperature dependence of the charge and aerosol production associated with breaking wave in a whitecap simulation tank. J Geophys Res 95(C4): 5313–5319. doi:10.1029/JC095iC04p05313

    Article  Google Scholar 

  • Carruthers DJ, Choularton TC (1986) The microstructure of hill cap clouds. Q J Roy Meteorol Soc 112: 113–129. doi:10.1002/qj.49711247107

    Article  Google Scholar 

  • Clarke AD, Owens SR, Zhou J (2006) An ultrafine sea-salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere. J Geophys Res 111: D06202. doi:10.1029/2005JD006565

    Article  Google Scholar 

  • Donelan MA, Pierson WJ Jr (1987) Radar scattering and equilibrium ranges in wind-generated waves—with application to scatterometry. J Geophys Res 92: 4971–5029. doi:10.1029/JC092iC05p04971

    Article  Google Scholar 

  • Ewans KC, Kibblewhite AC (1990) An examination of fetch-limited wave growth off the west coast of New Zealand by comparison with the JONSWAP results. J Phys Oceanogr 20: 1278–1296. doi:10.1175/1520-0485(1990)020<1278:AEOFLW>2.0.CO;2

    Article  Google Scholar 

  • Forget P, Saillard M, Broche P (2006) Observations of the sea surface by coherent UHF radar in nearshore environment. J Geophys Res 111: C09015. doi:10.1029/2005JC002900

    Article  Google Scholar 

  • Gong SL, Barrie LA, Blanchet JP (1997) Modeling sea-salt aerosols in the atmosphere: model development. J Geophys Res 102(D3): 3805–3818. doi:10.1029/96JD02953

    Article  Google Scholar 

  • Guan C, Hu W, Sun J, Li R (2007) The whitecap coverage model from breaking dissipation parameterizations of wind waves. J Geophys Res 112: C05031. doi:10.1029/2006JC003714

    Article  Google Scholar 

  • Guelle W, Schulz M, Balkanski Y, Dentener F (2001) Influence of the source formulation on modeling the atmospheric global distribution of sea salt aerosol. J Geophys Res 106(D21): 27,509–27,524. doi:10.1029/2001JD900249

    Article  Google Scholar 

  • Hasselmann K, Barnett TP, Bouws E, Carlson H, Cartwright DE, Enke K, Ewing JA, Gienapp H, Hasselmann DE, Krusemann P, Meerburg A, Müller P, Olbers DJ, Richters K, Sell W, Walden H (1973) Measurements of the wind–wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deut Hydrograph Z 12, Suppl A:95 pp

  • Hoppel WA, Frick GM, Fitzgerald JW (2002) Surface source function for sea-salt aerosol and aerosol dry deposition to the ocean surface. J Geophys Res 107: D19 4382. doi:10.1029/2001JD002014

    Google Scholar 

  • Hoppel WA, Cafferey PF, Frick GM (2005) Particle deposition on water: surface sources versus upwind sources. J Geophys Res 110: D10206. doi:10.1029/2004JD005148

    Article  Google Scholar 

  • Jamet JL, Bogé G, Richard S, Geneys C, Jamet D (2001) The zooplankton community in bays of Toulon area (north-west Mediterranean sea, France).. Hydrobiologia 457: 155–165. doi:10.1023/A:1012279417451

    Article  Google Scholar 

  • Knipping EM, Dabdub D (2003) Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. Environ Sci Technol 37: 275–284. doi:10.1021/es025793z

    Article  Google Scholar 

  • Kraan C, Oost WA, Janssen PAEM (1996) Wave energy dissipation by whitecaps. J Atmos Ocean Technol 13: 262–267. doi:10.1175/1520-0426(1996)013<0262:WEDBW>2.0.CO;2

    Article  Google Scholar 

  • Lafon C, Piazzola J, Forget P, Le Calvé O, Despiau S (2004) Analysis of the variations of the whitecap fraction as measured in a coastal zone. Boundary-Layer Meteorol 111: 339–360. doi:10.1023/B:BOUN.0000016490.83880.63

    Article  Google Scholar 

  • Lafon C, Piazzola J, Forget P, Despiau S (2007) Whitecap coverage in coastal environment for steady and unsteady wave field conditions. J Mar Syst 66: 38–46. doi:10.1016/j.jmarsys.2006.02.013

    Article  Google Scholar 

  • Laskin A, Gaspar DJ, Wang W, Hunt SW, Cowin JP, Colson SD, Finlayson-Pitts BJ (2003) Reactions at interfaces as a source of sulfate formation in sea-salt particles. Science 301(5631): 340–344. doi:10.1126/science.1085374

    Article  Google Scholar 

  • Lin W, Sanford LP, Suttles SE (2002) Wave measurement and modeling in Chesapeake Bay. Cont Shelf Res 22: 2673–2686. doi:10.1016/S0278-4343(02)00120-6

    Article  Google Scholar 

  • Liss PS, Merlivat L (1986) Air–sea exchange rates: introduction and synthesis. In: Buat-Menard P (eds) The role of air–sea exchange in geochemical cycling. D. Reidel, Norwell, MA, pp 113–127

    Google Scholar 

  • Liu PC, Schwab DJ, Bennett JR (1984) Comparison of a two-dimensional wave prediction model with synoptic measurements in Lake Michigan. J Phys Oceanogr 14: 1514–1518. doi:10.1175/1520-0485(1984)014<1514:COATDW>2.0.CO;2

    Article  Google Scholar 

  • Liu PC, Schwab DJ, Jensen RE (2002) Has wind–wave modeling reached its limit? Ocean Eng 29: 81–98. doi:10.1016/S0029-8018(00)00074-3

    Article  Google Scholar 

  • Mallet M, Roger JC, Despiau S, Dubovik O, Putaud JP (2003) Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE. Atmos Res 69(1–2): 73–97

    Article  Google Scholar 

  • Martensson M, Nilsson ED, de Leeuw G, Cohen LH, Hansson HC (2003) Laboratory simulations of the primary marine aerosol generated by bubble bursting. J Geophys Res Atmos 108: 4297. doi:10.1029/2002JD002263

    Article  Google Scholar 

  • Massouh L, Le Calve O (1999) Measurement of whitecap coverage during F.E.T.C.H. 98 experiment. In: 1999 European aerosol conference, Prague Czech Republic September 6–10 1999. J Aerosol Sci 30(Suppl 1):s177–s178. doi:10.1016/S0021-8502(99)80100-1

    Google Scholar 

  • Mayençon R (1992) Météorologie Marine in Ed. Maritimes et d’Outre-Mer. 336 pp

  • Monahan EC (1986) The Ocean as a source for atmospheric particles. In: NATO advanced study institute conference on the role of air–sea exchange in geochemical cycling. D. Reidel Publishers, Dordrecht, Holland, pp 129–163

  • Monahan EC, O’Muircheartaigh IG (1980) Optimal power-law description of oceanic whitecap coverage dependence on wind Speed. J Phys Oceanogr 10: 2094–2099. doi:10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2

    Article  Google Scholar 

  • Monahan EC, O’Muircheartaigh IG (1986) Review article: whitecaps and the passive remote sensing of the ocean surface. Int J Remote Sens 7: 627–642. doi:10.1080/01431168608954716

    Article  Google Scholar 

  • Monahan EC, Woolf DK (1989) Comments on variations of whitecap coverage with wind stress and water Temperature. J Phys Oceanogr 19: 706–709. doi:10.1175/1520-0485(1989)019<0706:COOWCW>2.0.CO;2

    Article  Google Scholar 

  • Monahan EC, Fairall CW, Davidson KL, Boyle PJ (1983) Observed interrelation between 10 m winds ocean whitecaps and marine aerosols. Q J Roy Meteorol Soc 109: 375–392. doi:10.1002/qj.49710946010

    Article  Google Scholar 

  • Monahan EC, Spiel DE, Davidson KL (1986) A model of marine aerosol generation via whitecaps and wave disruption. In: Monahan EC, Mac Niocaill G (eds) Oceanic whitecaps and their role in air–sea exchange processes. Reidel, Hingham, MA, pp 167–174

    Google Scholar 

  • O’Dowd CD, De Leeuw G (2007) Marine aerosol: a review of the current knowledge. Philos Trans Roy Soc A 365: 1753–1774. doi:10.1098/rsta.2007.2043

    Article  Google Scholar 

  • Paerl HW, Boynton WR, Dennis RL, Driscoll CT, Greening HS, Kremer JN, Rabalais NN, Seitzinger SP (2000) Atmospheric deposition of nitrogen in coastal waters: biogeochemical and ecological implications, in Nitrogen loading in coastal water bodies. An atmospheric perspective. In: Valigura RA, Alexander RB, Castro MS, Meyers TP, Paerl HW, Stacey PE, Turner RE (eds) Coastal and estuarine studies, vol 57. American Geophysical Union, Washington, DC, pp 11–53

    Google Scholar 

  • Piazzola J, Despiau S (1997a) Contribution of marine aerosols in the particle size distributions observed in Mediterranean coastal zone. Atmos Environ 31: 2991–3009. doi:10.1016/S1352-2310(97)00088-5

    Article  Google Scholar 

  • Piazzola J, Despiau S (1997b) Vertical distribution of aerosol particles near the air–sea interface in coastal zone. J Aerosol Sci 28: 1579–1599. doi:10.1016/S0021-8502(97)00020-7

    Article  Google Scholar 

  • Piazzola J, Kaloshin G (2005) Performance evaluation of the coastal aerosol extinction code “MEDEX” with data from the Black Sea. J Aerosol Sci 36: 341–359. doi:10.1016/j.jaerosci.2004.09.009

    Article  Google Scholar 

  • Piazzola J, Forget P, Despiau S (2002) A sea spray generation function for fetch-limited conditions. Ann Geophys 20: 121–131

    Article  Google Scholar 

  • Piazzola J, Bouchara F, Van Eijk AMJ, De Leeuw G (2003) Development of the Mediterranean extinction code MEDEX. Opt Eng 42: 912–924. doi:10.1117/1.1556765

    Article  Google Scholar 

  • Pounder C (1986) Sodium chloride and water temperature effects on bubbles. In: Monahan EC, Mac Niocaill G (eds) Oceanic whitecaps and their role in air–sea exchange processes. Reidel, Hingham, MA, pp 278–279

    Google Scholar 

  • Rouault MP, Mestayer PG, Schiestel R (1991) A model of evaporating spray droplet dispersion. J Geophys Res Atmos 96: 7181–7200

    Article  Google Scholar 

  • Schwab DJ, Bennett JR, Liu PC, Donelan MA (1984) Application of a simple numerical wave prediction model to Lake Erie. J Geophys Res 89: 3586–3592. doi:10.1029/JC089iC03p03586

    Article  Google Scholar 

  • Smith MH, Park PM, Consterdine IE (1993) Marine aerosol concentrations and estimated fluxes over the sea. Q J Roy Meteorol Soc 119: 809–824. doi:10.1002/qj.49711951211

    Article  Google Scholar 

  • Snyder RL, Kennedy RM (1983) On the formation of whitecaps by a threshold mechanism, part I: basic formalism. J Phys Oceanogr 13: 1482–1492. doi:10.1175/1520-0485(1983)013<1482:OTFOWB>2.0.CO;2

    Article  Google Scholar 

  • Stramska M, Petelski T (2003) Observations of oceanic whitecaps in the north polar waters of the Atlantic. J Geophys Res 108: 31-1–31-10. doi:10.1029/2002JC001321

    Google Scholar 

  • Sugihara Y, Tsumori H, Ohga T, Yoshioka H, Serizawa S (2007) Variation of whitecap coverage with wave-field conditions. J Mar Syst 66: 47–60. doi:10.1016/j.jmarsys.2006.01.014

    Article  Google Scholar 

  • Thorpe SA, Bowyer P, Woolf DK (1992) Some factors affecting the size distributions of oceanic bubbles. J Phys Oceanogr 22: 382–389. doi:10.1175/1520-0485(1992)022<0382:SFATSD>2.0.CO;2

    Article  Google Scholar 

  • Toba Y, Koga M (1986) A parameter describing overall conditions of wave breaking whitecapping sea-spray production and wind stress. In: Monahan EC, Mac Niocaill G (eds) Oceanic whitecaps and their role in air–sea exchange processes. Reidel, Hingham, MA, pp 37–47

    Google Scholar 

  • Wu J (1979) Oceanic whitecaps and sea state. J Phys Oceanogr 9: 1064–1068. doi:10.1175/1520-0485(1979)009<1064:OWASS>2.0.CO;2

    Article  Google Scholar 

  • Xu D, Liu X, Yu D (2000) Probability of wave breaking and whitecap coverage in a fetch-limited sea. J Geophys Res 105: 14253–14259. doi:10.1029/2000JC900040

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Piazzola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piazzola, J., Forget, P., Lafon, C. et al. Spatial Variation of Sea-Spray Fluxes over a Mediterranean Coastal Zone Using a Sea-State Model. Boundary-Layer Meteorol 132, 167–183 (2009). https://doi.org/10.1007/s10546-009-9386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-009-9386-2

Keywords

Navigation