Skip to main content

Advertisement

Log in

Influence of Thermal Effects on the Wind Field Within the Urban Environment

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Micrometeorological conditions in the vicinity of urban buildings strongly influence the requirements that are imposed on building heating and cooling. The goal of the present study, carried out within the Advance Tools for Rational Energy Use towards Sustainability (ATREUS) European research network, is the evaluation of the wind field around buildings with walls heated by solar radiation. Two computational fluid dynamics (CFD) codes were validated against extensive wind-tunnel observations to assess the influence of thermal effects on model performance. The code selected from this validation was used to simulate the wind and temperature fields for a summer day in a specific region of the city of Lisbon. For this study, the meteorological data produced by a non-hydrostatic mesoscale atmospheric model (MM5) were used as boundary conditions for a CFD code, which was further applied to analyze the effects of local roughness elements and thermodynamic conditions on the air flow around buildings. The CFD modelling can also provide the inflow parameters for a Heating, Ventilation and Air Conditioning (HVAC) system, used to evaluate the building energy budgets and to predict performance of the air-conditioning system. The main finding of the present three-dimensional analyses is that thermal forcing associated with the heating of buildings can significantly modify local properties of the air flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bohnenstengel S, Schlunzen KH, Grawe D (2004) Influence of thermal effects on street canyon circulations. Meteorol Z 13: 381–386. doi:10.1127/0941-2948/2004/0013-0381

    Article  Google Scholar 

  • Borrego C, Martins JM, Tome M, Carvalho A, Barros N, Pinto C (2000) Wind tunnel validation of VADIS, a numerical model simulating flow and dispersion around buildings sets. In: Proceedings of EUROTRAC-2 symposium 2000, Springer, Garmisch-Partenkirchen, Germany, CD-ROM

  • Borrego C, Tchepel O, Costa AM, Amorim JH, Miranda AI (2003) Emission and dispersion modelling of Lisbon air quality at local scale. Atmos Environ 37: 5197–5205. doi:10.1016/j.atmosenv.2003.09.004

    Article  Google Scholar 

  • Borrego C, Tchepel O, Salmim L, Amorim JH, Costa AM, Janko J (2004) Integrated modelling of road traffic emissions: application to Lisbon air quality management. Cybern Syst Int J 35: 535–548. doi:10.1080/0196972049051904

    Article  Google Scholar 

  • Borrego C, Tchepel O, Costa AM, Martins H, Ferreira J (2007) Urban population exposure to particulate air pollution induced by road transport. In: Air pollution modelling and its application XVII. Springer US Ed., pp 267–276

  • Chen Y, Kim S (1987) Computation of turbulent flows using an extended k-\({\varepsilon}\) turbulence closure model. Report NASA-CR-179204

  • Dimitrova R, Sini J-F, Richards K, Schatzmann M (2007) CFD investigation of airflow around a simple obstacle with single heating wall. EURASAP Newsl 63: 1–35

    Google Scholar 

  • Huizhi L, Bin L, Fengrong Z, Boyin Z, Jianguo S (2003) A laboratory model for the flow in urban street canyons induced by bottom heating. Adv Atmos Sci 20: 554–564. doi:10.1007/BF02915498

    Article  Google Scholar 

  • Hunter LJ, Johnson GT, Watson ID (1992) An investigation of three-dimensional characteristic of flow regimes within the urban canyon. Atmos Environ 26B: 425–432

    Google Scholar 

  • Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15(2): 301–314. doi:10.1016/0017-9310(72)90076-2

    Article  Google Scholar 

  • Kelly PM, Jones P, Briffa K (1997) Classifying the winds and weather. Chapter 8. In: Hulme M, Barrow EM (eds) The climate of the British isles: present, past and future. Routledge, London, pp 153–172

    Google Scholar 

  • Ketzel M, Louka P, Sahm P, Guilloteau E, Sini J-F, Moussiopoulos N (2001) Intercomparison of numerical urban dispersion models—part II: street canyon in Hannover, Germany. Water Air Soil Pollut Focus 2: 603–613. doi:10.1023/A:1021301316096

    Google Scholar 

  • Kim J-J, Baik J-J (1999) A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons. J Appl Meteorol 38(9): 1249–1260. doi:10.1175/1520-0450(1999)038<1249:ANSOTE>2.0.CO;2

    Article  Google Scholar 

  • Kim J-J, Baik J-J (2001) Urban street-canyon flows with bottom heating. Atmos Environ 35(20): 3395–3404. doi:10.1016/S1352-2310(01)00135-2

    Article  Google Scholar 

  • Kovar-Panskus A, Louka P, Sini J-F, Savory E, Czech M, Abdelqari A, Mestayer PG, Toy N (2002a) Influence of geometry on the mean flow within urban street canyons—a comparison of wind tunnel experiments and numerical simulations. J Water Air Soil Pollut Focus 2: 365–380. doi:10.1023/A:1021308022939

    Article  Google Scholar 

  • Kovar-Panskus A, Moulinneuf L, Savory E, Abdelquari A, Sini J-F, Rosant J-M, Robins A, Toy N (2002b) A wind tunnel investigation of the influence of solar-induced wall heating on the flow regime within a simulated urban street canyon. J Water Air Soil Pollut Focus 2: 555–571. doi:10.1023/A:1021345131117

    Article  Google Scholar 

  • Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3: 269–289. doi:10.1016/0045-7825(74)90029-2

    Article  Google Scholar 

  • Lévi Alvares S (now Anquetin S) (1991) Simulation numérique des écoulements urbains à l’échelle d’une rue à l’aide d’un module k-\({\varepsilon}\) (in French). PhD thesis, Ecole Centrale de Nantes, France

  • Louka P, Vachon G, Sini J-F, Mestayer PG, Rosant J-M (2001) Thermal effects on the airflow in a street canyon—Nantes ’99 experimental results and model simulations. J Water Air Soil Pollut Focus 2: 351–364

    Article  Google Scholar 

  • Martins JM, Borrego C (1998) Describing the dispersion of pollutants near buildings under low wind speed conditions: real scale and numerical results, Envirosoft 98—development and application of computer techniques to environmental studies. WIT, Las Vegas, pp 149–158

  • Mestayer PG, Sini J-F, Jobert M (1995) Simulation of wall temperature influence on flow and dispersion within street canyons. In: Proceedings of the 3rd international conference on air pollution, vol 1: turbulence and diffusion, Proto Carras, Greece, pp 109–116

  • Nakamura Y, Oke TR (1988) Wind, temperature and stability conditions in an east-west oriented urban canyon. Atmos Environ 22(12): 2691–2700. doi:10.1016/0004-6981(88)90437-4

    Article  Google Scholar 

  • Oke TR (1988) The urban energy balance. Prog Phys Geogr 12(4): 471–508. doi:10.1177/030913338801200401

    Article  Google Scholar 

  • Oxizidis S, Dudek AV, Papadopoulous AM (2008) A computational method to assess the impact of urban climate on buildings using modeled climatic data. Energy Build 40: 215–223. doi:10.1016/j.enbuild.2007.02.018

    Article  Google Scholar 

  • Richards K, Schatzmann M, Leitl B (2006) Wind tunnel experiments modelling the thermal effects within the vicinity of a single block building with leeward wall heating. J Wind Eng Ind Aerodyn 94(8): 621–636. doi:10.1016/j.jweia.2006.02.003

    Article  Google Scholar 

  • Ruck B (1993) Wind-tunnel measurements of flow field characteristics around a heated model building. J Wind Eng Ind Aerodyn 50(1–3): 139–152. doi:10.1016/0167-6105(93)90069-Z

    Article  Google Scholar 

  • Santamouris M, Papanikolaou N, Koronakis I, Livada I, Assimakopoulos DN (1999) Thermal and airflow characteristics in a deep pedestrian canyon under hot weather conditions. Atmos Environ 33(27): 4503–4521. doi:10.1016/S1352-2310(99)00187-9

    Article  Google Scholar 

  • Sahm P, Louka P, Ketzel M, Guilloteau E, Sini J-F (2002) Intercomparison of numerical urban dispersion models—part I: street canyon and single building configurations. J Water Air Soil Pollut Focus 2: 587–601. doi:10.1023/A:1021349232026

    Article  Google Scholar 

  • Sini J-F, Anquetin S, Mestayer PG (1996) Pollutant dispersion and thermal effects in urban street canyons. Atmos Environ 30(15): 2659–2667. doi:10.1016/1352-2310(95)00321-5

    Article  Google Scholar 

  • Uehara K, Murakami S, Oikawa S, Wakamatsu S (2000) Wind tunnel experiments on how thermal affects flow in and above urban street canyons. Atmos Environ 34(10): 1553–1562. doi:10.1016/S1352-2310(99)00410-0

    Article  Google Scholar 

  • Vardoulakis S, Dimitrova R, Richards K, Hamlyn D, Camilleri G, Sini J-F, Britter R, Borrego C, Schatzmann M, Moussiopoulos N (2006) Numerical model inter-comparison for a single block building within ATREUS. In: Proceedings of the 10th international conference on harmonisation within atmospheric dispersion modelling for regulatory purposes (HARMO10), Crete, Greece, 17–20 Oct 2006, pp 302–306

  • Xie X, Liu C-H, Leung DYC (2007) Impact of building facades and ground heating on wind flow and pollutant transport in street canyons. Atmos Environ 41(39): 9030–9049. doi:10.1016/j.atmosenv.2007.08.027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Sini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitrova, R., Sini, JF., Richards, K. et al. Influence of Thermal Effects on the Wind Field Within the Urban Environment. Boundary-Layer Meteorol 131, 223–243 (2009). https://doi.org/10.1007/s10546-009-9368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-009-9368-4

Keywords

Navigation