Abstract
A land-surface model (LSM) is coupled with a large-eddy simulation (LES) model to investigate the vegetation-atmosphere exchange of heat, water vapour, and carbon dioxide (CO2) in heterogeneous landscapes. The dissimilarity of scalar transport in the lower convective boundary layer is quantified in several ways: eddy diffusivity, spatial structure of the scalar fields, and spatial and temporal variations in the surface fluxes of these scalars. The results show that eddy diffusivities differ among the three scalars, by up to 10–12%, in the surface layer; the difference is partly attributed to the influence of top-down diffusion. The turbulence-organized structures of CO2 bear more resemblance to those of water vapour than those of the potential temperature. The surface fluxes when coupled with the flow aloft show large spatial variations even with perfectly homogeneous surface conditions and constant solar radiation forcing across the horizontal simulation domain. In general, the surface sensible heat flux shows the greatest spatial and temporal variations, and the CO2 flux the least. Furthermore, our results show that the one-dimensional land-surface model scheme underestimates the surface heat flux by 3–8% and overestimates the water vapour and CO2 fluxes by 2–8% and 1–9%, respectively, as compared to the flux simulated with the coupled LES-LSM.
Similar content being viewed by others
References
Avissar R, Schmidt T (1998) An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J Atmos Sci 55: 2666–2689. doi:10.1175/1520-0469(1998)055<2666:AEOTSA>2.0.CO;2
Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30: 327–341. doi:10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2
Courault D, Drobinski P, Brunet Y, Lacarrere P, Talbot C (2007) Impacts of surface heterogeneity on a buoyancy-driven convective boundary layer in light winds. Boundary-Layer Meteorol 124: 383–403. doi:10.1007/s10546-007-9172-y
Deardorff JW (1979) Prediction of convective mixed-layer entrainment for realistic capping inversion structure. J Atmos Sci 36: 424–436. doi:10.1175/1520-0469(1979)036<0424:POCMLE>2.0.CO;2
Denmead OT, Bradley EF (1985) Flux-gradient relationships in a forest canopy. In: Hutchison BS, Hickseds BB (eds) The forest-atmosphere interaction. D. Reidel Publishing Co, Dordrecht, pp 421–442
Doran JC, Hubbe JM, Liljegren JC, Shaw WJ (1998) A technique for determining the spatial and temporal distribution of surface fluxes of heat and moisture over the Southern Great Plains Cloud and Radiation Testbed. J Geophys Res 103: 6109–6121. doi:10.1029/97JD03427
Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7: 363–372. doi:10.1007/BF00240838
Ek MB, Mitchell KE, Lin L, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of NOAH land surface model advances in the National Center for Environmental Prediction operational mesoscale Eta model. J Geophys Res 102: 28987–28996
Gao W, Shaw RH, Paw UKT (1989) Observation of organized structure in turbulent flow within and above a forest canopy. Boundary-Layer Meteorol 47: 349–377. doi:10.1007/BF00122339
Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, U.K., pp. 316
Hadfield MG, Cotton WR, Pielke RA (1991) Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part I: a small-scale circulation with zero wind. Boundary-Layer Meteorol 57: 79–114. doi:10.1007/BF00119714
Hadfield MG, Cotton WR, Pielke RA (1992) Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: the effect of changes in wavelength and wind speed. Boundary-Layer Meteorol 58: 307–327. doi:10.1007/BF00120235
Huang JP, Lee X, Patton EG (2008) A modelling study of flux imbalance and the influence of entrainment in the convective boundary layer. Boundary-Layer Meteorol 127: 273–292. doi:10.1007/s10546-007-9254-x
Idso SB (1981) A set of equations for full spectrum and 8- to 14- μm and 10.5- to 12.5- μm thermal radiation from cloudless skies. Water Resour Res 17: 295–304. doi:10.1029/WR017i002p00295
Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil Trans Roy Soc Lond 273B: 593–610. doi:10.1098/rstb.1976.0035
Jonker HJJ, Duynkerke PG, Cuijpers JWM (1999) Mesoscale fluctuations in scalars generated by boundary convection. J Atmos Sci 56: 801–808. doi:10.1175/1520-0469(1999)056<0801:MFISGB>2.0.CO;2
Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T (2004a) LES study of the energy imbalance problem with eddy covariance fluxes. Boundary-Layer Meteorol 110: 381–404. doi:10.1023/B:BOUN.0000007225.45548.7a
Kanda M, Moriwaki R, Kasamatsu F (2004b) Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol 112: 343–368. doi:10.1023/B:BOUN.0000027909.40439.7c
Lee X, Yu Q, Sun X, Liu J, Min Q, Liu Y, Zhang X (2004) Micrometeorological fluxes under the influence of regional and local advection: a revisit. Agric For Meteorol 122: 111–124. doi:10.1016/j.agrformet.2003.02.001
Mahrt L (1998) Flux sampling errors for aircraft and towers. J Atmos Ocean Technol 15: 416–429. doi:10.1175/1520-0426(1998)015<0416:FSEFAA>2.0.CO;2
McNaughton KG, Laubach J (1998) Unsteadiness as a cause of non-equality of eddy diffusivities for heat and vapour at the base of an advective inversion. Boundary-Layer Meteorol 88: 479–504. doi:10.1023/A:1001573521304
Moeng CH (1984) A large-eddy simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41: 2052–2062. doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2
Patton EG, Sullivan PP, Moeng CH (2005) The influence of idealized heterologeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmos Sci 62: 2078–2097. doi:10.1175/JAS3465.1
Paw UKT, Brunet Y, Collineau S, Shaw RH, Maitani T, Qin J, Hipps L (1992) On coherent structures in turbulence above and within agricultural plant canopies. Agric For Meteorol 61: 55–68. doi:10.1016/0168-1923(92)90025-Y
Ronda RJ, Bruin HARD, Holtslag AAM (2001) Representation of the canopy conductance in modelling the surface energy budget for low vegetation. J Appl Meteorol 40: 1431–1444. doi:10.1175/1520-0450(2001)040<1431:ROTCCI>2.0.CO;2
Shen SH, Leclerc MY (1995) How large must surface inhomogeneities be before they influence the convective boundary layer structure? A case study. Q J Roy Meteorol Soc 121: 1209–1228. doi:10.1002/qj.49712152603
Steinfeld G, Letzel MO, Raasch S, Kanda M, Inagaki A (2007) Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: results of a large-eddy simulation study. Boundary-Layer Meteorol 123: 77–98. doi:10.1007/s10546-006-9133-x
Su HB, Paw UKT, Shaw RH (1996) Development of a coupled leaf and canopy model for the simulations of plant-atmosphere interactions. J Appl Meteorol 35: 722–748. doi:10.1175/1520-0450(1996)035<0733:DOACLA>2.0.CO;2
Sullivan PP, McWilliams JC, Moeng CH (1994) A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol 71: 247–276. doi:10.1007/BF00713741
Sullivan PP, McWilliams JC, Moeng CH (1996) A grid nesting method for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol 80: 167–202. doi:10.1007/BF00119016
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, J., Lee, X. & Patton, E.G. Dissimilarity of Scalar Transport in the Convective Boundary Layer in Inhomogeneous Landscapes. Boundary-Layer Meteorol 130, 327–345 (2009). https://doi.org/10.1007/s10546-009-9356-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10546-009-9356-8