Boundary-Layer Meteorology

, Volume 130, Issue 3, pp 423–435 | Cite as

A Note on Two-Equation Closure Modelling of Canopy Flow

Note

Abstract

The note presents a rational approach to modelling the source/sink due to vegetation or buoyancy effects that appear in the turbulent kinetic energy, E, equation and a supplementary equation for a length-scale determining variable, φ, when two-equation closure is applied to canopy and atmospheric boundary-layer flows. The approach implements only standard model coefficients Cφ1 and Cφ2 in the production and destruction terms of the φ equation, respectively. Numerical tests illustrate the practical applicability of the method, where, for example, simulations with the Eω model (where \({\varphi=\omega=\varepsilon/E}\) is the specific dissipation and \({\varepsilon}\) is the dissipation rate of E) properly reproduce both the surface-layer wind profile estimated from the Monin-Obukhov similarity theory and the mixing-height evolution observed above forested terrain in Southern Finland.

Keywords

Atmospheric boundary layer Canopy flow Non-neutral stratification Two-equation models Turbulence closure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apsley DD, Castro IP (1997) A limited-length-scale k–\({\varepsilon}\) model for the neutral and stably-stratified atmospheric boundary layer. Boundary-Layer Meteorol 83: 75–98. doi:10.1023/A:1000252210512 CrossRefGoogle Scholar
  2. Ayotte KW, Finnigan JJ, Raupach MR (1999) A second-order closure for neutrally stratified vegetative canopy flows. Boundary-Layer Meteorol 90: 189–216. doi:10.1023/A:1001722609229 CrossRefGoogle Scholar
  3. Baumert H, Peters H (2000) Second-moment closures and length scales for weakly stratified turbulent shear flows. J Geophys Res 105: 6453–6468. doi:10.1029/1999JC900329 CrossRefGoogle Scholar
  4. Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res 67: 3095–3102. doi:10.1029/JZ067i008p03095 CrossRefGoogle Scholar
  5. Brunet Y, Finnigan JJ, Raupach MR (1994) A wind tunnel study of air flow in waving wheat: single-point velocity statistics. Boundary-Layer Meteorol 70: 95–132. doi:10.1007/BF00712525 CrossRefGoogle Scholar
  6. Businger J, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189. doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2 CrossRefGoogle Scholar
  7. Castro FA, Palma JMLM, Silva Lopes A (2003) Simulation of the Askervein flow: Part 1: Reynolds averaged Navier-Stokes equations (k–\({\varepsilon}\) turbulence model). Boundary-Layer Meteorol 107: 501–530. doi:10.1023/A:1022818327584 CrossRefGoogle Scholar
  8. Deardorff JW (1972) Numerical investigations of neutral and unstable planetary boundary layers. J Atmos Sci 18: 495–527Google Scholar
  9. Duynkerke PG (1988) Application of the \({E-\varepsilon}\) turbulence closure model to the neutral and stable atmospheric boundary layer. J Atmos Sci 45: 865–880. doi:10.1175/1520-0469(1988)045<0865:AOTTCM>2.0.CO;2 CrossRefGoogle Scholar
  10. Finnigan JJ (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–571. doi:10.1146/annurev.fluid.32.1.519 CrossRefGoogle Scholar
  11. Finnigan JJ (2007) Turbulent flow in canopies on complex topography and the effects of stable stratification. In: Gayev YA, Hunt JCR (eds) Flow and transport processes with complex obstructions. Springer, Dordrecht, pp 199–219CrossRefGoogle Scholar
  12. Finnigan JJ, Shaw RH (2008) Double-averaging methodoly and its application to turbulent flow in and above vegetation canopies. Acta Geophys 56: 534–561. doi:10.2478/s11600-008-0034-x CrossRefGoogle Scholar
  13. Hanjalić K (2005) Will RANS survive LES? A view of perspectives. ASME J Fluid Eng 27: 831–839. doi:10.1115/1.2037084 CrossRefGoogle Scholar
  14. Hanjalić K, Kenjereš S (2008) Some developments in turbulence modeling for wind and environmental engineering. J Wind Eng Ind Aerodyn 96: 1537–1570. doi:10.1016/j.jweia.2008.02.054 CrossRefGoogle Scholar
  15. Hari P, Kulmala M (2005) Station for measuring ecosystem–atmosphere relations (SMEAR II). Boreal Environ Res 10: 315–322Google Scholar
  16. Hipsey MR, Sivapalan M, Clement TP (2004) A numerical and field investigation of surface heat fluxes from small wind-sheltered waterbodies in semi-arid Western. Environ Fluid Mech 4: 79–106. doi:10.1023/A:1025547707198 CrossRefGoogle Scholar
  17. Kantha LH (2004) The length scale equation in turbulence models. Nonlinear Process Geophys 11: 83–97.15Google Scholar
  18. Kantha LH, Bao J-W, Carniel S (2005) A note on Tennekes hypothesis and its impact on second moment closure models. Ocean Model 9: 23–29Google Scholar
  19. Katul GG, Mahrt L, Poggi D, Sanz C (2004) One- and two-equation models for canopy turbulence. Boundary- Layer Meteorol 113: 81–109. doi:10.1023/B:BOUN.0000037333.48760.e5 CrossRefGoogle Scholar
  20. Laakso L, Grönholm T, Kulmala L, Haapanala S, Hirsikko A, Lovejoy ER, Kazil J, Kurtén T, Boy M, Nilsson ED, Sogachev A, Riipinen I, Stratmann F, Kulmala M (2007) Hot-air balloon measurements of vertical variation of boundary layer new particle formation. Boreal Environ Res 12: 279–294Google Scholar
  21. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Mech Appl Mech Eng 3: 269–289CrossRefGoogle Scholar
  22. Launder BE, Reece GJ, Rodi W (1975) Progress in the development of a Reynolds-stress turbulent closure. J Fluid Mech 68: 537–566. doi:10.1017/S0022112075001814 CrossRefGoogle Scholar
  23. Moeng C-H (1984) A Large-eddy simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41: 2052–2062. doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2 CrossRefGoogle Scholar
  24. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9: 857–860. doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2 CrossRefGoogle Scholar
  25. Pielke R (2002) Mesoscale meteorological modeling. Academic Press, San Diego, 676ppGoogle Scholar
  26. Pope SB (2000) Turbulent flows. Cambridge University Press, UK, 771ppGoogle Scholar
  27. Rao KS, Wyngaard JC, Coté OR (1974) Local advection of momentum, heat, and moisture in micrometeorology. Boundary-Layer Meteorol 7: 331–348. doi:10.1007/BF00240836 CrossRefGoogle Scholar
  28. Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol 22: 79–90. doi:10.1007/BF00128057 CrossRefGoogle Scholar
  29. Seginer I, Mulhearn PJ, Bradley EF, Finnigan JJ (1976) Turbulent flow in a model plant canopy. Boundary-Layer Meteorol 10: 423–453. doi:10.1007/BF00225863 CrossRefGoogle Scholar
  30. Sogachev A, Panferov O (2006) Modification of two-equation models to account for plant drag. Boundary-Layer Meteorol 121: 229–266. doi:10.1007/s10546-006-9073-5 CrossRefGoogle Scholar
  31. Sogachev A, Menzhulin G, Heimann M, Lloyd J (2002) A simple three dimensional canopy—planetary boundary layer simulation model for scalar concentrations and fluxes. Tellus 54: 784–819CrossRefGoogle Scholar
  32. Svensson U, Häggkvist K (1990) A two-equation turbulence model for canopy flows. J Wind Eng Ind Aerodyn 35: 201–211CrossRefGoogle Scholar
  33. Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence models. J Mar Res 61: 235–265. doi:10.1357/002224003322005087 CrossRefGoogle Scholar
  34. Wang H, Takle ES (1995) A numerical simulation of boundary-layer flows near shelterbelts. Boundary-Layer Meteorol 75: 141–173. doi:10.1007/BF00721047 CrossRefGoogle Scholar
  35. Wilcox DC (1988) Reassessment of the scale determining equation for advance turbulence models. AIAA J 26: 1299–1310. doi:10.2514/3.10041 CrossRefGoogle Scholar
  36. Wilcox DC (2002) Turbulence modeling for CFD. DCW Industries Inc., La Cañada, 540ppGoogle Scholar
  37. Wilson JD, Finnigan JJ, Raupach MR (1998) A first-order closure for disturbed plant-canopy flows, and its application to winds in a canopy on a ridge. Q J R Meteorol Soc 124: 705–732Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Wind Energy DivisionRisø National Laboratory for Sustainable Energy, Technical University of DenmarkRoskildeDenmark

Personalised recommendations