Skip to main content

A Case Study of CO2, CO and Particles Content Evolution in the Suburban Atmospheric Boundary Layer Using a 2-μm Doppler DIAL, a 1-μm Backscatter Lidar and an Array of In-situ Sensors

Abstract

A network of remote and in-situ sensors was deployed in a Paris suburb in order to evaluate the mesoscale evolution of the daily cycle of CO2 and related tracers in the atmospheric boundary layer (ABL) and its relation to ABL dynamics and nearby natural and anthropogenic sources and sinks. A 2-μm heterodyne Doppler differential absorption lidar, which combines measurements of, (1) structure of the atmosphere, (2) radial velocity, and (3) CO2 differential absorption was a particularly unique element of the observational array. We analyse the differences in the diurnal cycle of CO, CO2, lidar reflectivity (a proxy for aerosol content) and H2O using the lidar, airborne measurements in the free troposphere and ground-based measurements made at two sites located few kilometres apart. We demonstrate that vertical mixing dominates the early morning drawdown of CO and aerosol content trapped in the former nocturnal layer but not the H2O and CO2 mixing ratio variations. Surface fluxes, vertical mixing and advection all contribute to the ABL CO2 mixing ratio decrease during the morning transition, with the relative importance depending on the rate and timing of ABL rise. We also show evidence that when the ABL is stable, small-scale (0.1-km vertical and 1-km horizontal) gradients of CO2 and CO are large. The results illustrate the complexity of inferring surface fluxes of CO2 from atmospheric budgets in the stable boundary layer.

This is a preview of subscription content, access via your institution.

References

  1. AIRPARIF (2004) Report: Le cadastre des émissions pour l’année 2000 en Ile de France.’ In frame of the project, Plan de Protection de l’Atmosphère

  2. Andres RJ, Marland G, Fung I, Mattews E (1996) A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990. Glob Biogeochem Cycles 10(3): 419–430. doi:10.1029/96GB01523

    Article  Google Scholar 

  3. Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Boundary-Layer Meteorol 108(3): 397–417. doi:10.1023/A:1024168428135

    Article  Google Scholar 

  4. Aubinet M, Berbigier P, Bernhofer C, Cescatti A, Feigenwinter C, Granier A, Grünwald T, Havrankova K, Heinesch B, Longdoz B, Marcolla B, Montagnant L, Sedlak P (2005) Comparing CO2 storage and advection conditions at night at different carboeuroflux sites. Boundary-Layer Meteorol 116: 63–94. doi:10.1007/s10546-004-7091-8

    Article  Google Scholar 

  5. Bakwin PS, Tans PP, Hurst DF, Zhao C (1998) Measurements of carbon dioxide on very tall towers: results of the NOAA/CMDL program. Tellus 50B: 401–415

    Google Scholar 

  6. Braud H, Bousquet P, Ramonet M (2004) CO/CO2 ratio in urban atmosphere: example of the agglomeration of Paris, France, Institut Pierre Simon Laplace (IPSL). Notes des Activités Instrumentales (N.A.I), Paris, 42

  7. Chen JM, Chen B, Tans P (2007) Deriving daily carbon fluxes from hourly CO2 mixing ratios measured on the WLEF tall tower: an upscaling methodology. J Geophys Res 112: G01015. doi:10.1029/2006JG000280

    Article  Google Scholar 

  8. Conway TJ, Tans P, Waterman LS, Thoning KW, Kitzis DR, Masarie KA, Masarie KA, Zhang N (1994) Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J Geophys Res 99:22,831–22,855. doi:10.1029/94JD01951

  9. Daube BC, Boering KA, Andrews AE, Wofsy SC (2002) A high-precision fast-response airborne CO2 analyzer for in situ sampling from the surface to the middle stratosphere. J Atmos Oceanic Technol 19(10): 1532–1543

    Article  Google Scholar 

  10. Feigenwinter C, Bernhofer C, Vogt R (2004) The influence of advection on the short term CO2 budget in and above a forest canopy. Boundary-Layer Meteorol 113(2): 201–224. doi:10.1023/B:BOUN.0000039372.86053.ff

    Article  Google Scholar 

  11. Fitzgerald JW (1989) Model of the aerosol extinction profile in a well-mixed marine boundary layer. Appl Opt 28: 3534–3538

    Article  Google Scholar 

  12. Fochesatto GJ, Drobinski P, Flamant C, Guedalia D, Sarrat C, Flamant PH, Pelon J (2001) Evidence of dynamical coupling between the residual layer and the developing convective boundary layer. Boundary-Layer Meteorol 99: 451–464. doi:10.1023/A:1018935129006

    Article  Google Scholar 

  13. Frehlich R, Hannon SM, Henderson SW (1998) Coherent Doppler Lidar measurements of wind field statistics. Boundary-Layer Meteorol 86: 233–256. doi:10.1023/A:1000676021745

    Article  Google Scholar 

  14. Gerbig C, Lin JC, Wofsy SC, Daube BC, Andrews AE, Stephens BB, Bakwin PS, Grainger CA (2003) Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-oriented framework. J Geophys Res 108(D24): 4756. doi:10.1029/2002JD003018

    Google Scholar 

  15. Gibert F, Flamant PH, Bruneau D, Loth C (2006) Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer. Appl Opt 45: 4448–4458. doi:10.1364/AO.45.004448

    Article  Google Scholar 

  16. Gibert F, Schimdt M, Cuesta J, Ciais P, Ramonet M, Xuéref I, Larmanou E, Flamant PH (2007a) Retrieval of the average CO2 fluxes by combining in-situ CO2 measurements and backscatter lidar information. J Geophys Res 112: D10301. doi:10.1029/2006JD008190

    Article  Google Scholar 

  17. Gibert F, Cuesta J, Yano J-I, Arnault N, Flamant PH (2007b) On the correlation between convective plume up- and downdrafts, Lidar reflectivity and depolarization ratio. Boundary-Layer Meteorol. doi:10.1007/s10546-007-9205-6

  18. Gibert F, Marnas F, Edouart D, Flamant PH (2007c) An a posteriori method based on photo-acoustic cell information to correct for lidar transmitter spectral shift: application to atmospheric CO2 differential absorption lidar measurements. Appl Spect 61(10): 1068–1075. doi:10.1366/000370207782217798

    Article  Google Scholar 

  19. Gibert F, Joly L, Xuéref-Rémy I, Schmidt M, Royer A, Flamant PH, Ramonet M, Parvitte B, Durry G, Zéninari V (2008) Inter-comparison of 2-μm Heterodyne Differential Absorption Lidar, Laser Diode Spectrometer, LICOR NDIR analyzer and flasks measurements of near-ground atmospheric CO2 mixing ratio. Spectrochim Acta A. doi:10.1016/j.saa.2008.07.010

  20. Haeffelin M, Barthès L, Bock O, Boitel C, Bony S, Bouniol D, Chepfer H, Chiriaco M, Cuesta J, Delanoë J, Drobinski P, Dufresne J-L, Flamant C, Grall M, Hodzic A, Hourdin F, Lapouge F, Lemaître Y, Mathieu A, Morille Y, Naud C, Noël V, O’Hirok W, Pelon J, Pietras C, Protat A, Romand B, Scialom G, Vautard R (2005) SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann Geophys 23: 253–275

    Article  Google Scholar 

  21. Hänel G (1976) The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Adv Geophys 19: 73–188

    Google Scholar 

  22. Houghton RA, Hackler JL (1999) Emissions of carbon from forestry and land-use change in tropical Asia. Glob Change Biol 5(4): 481–492. doi:10.1046/j.1365-2486.1999.00244.x

    Article  Google Scholar 

  23. IPCC Climate Change 2001 (2001) The scientific basis. Contribution of Working Group I to the third assessment report of the intergovernment panel on climate change (IPCC). Cambridge University Press, New York

  24. Joly L, Parvitte B, Zeninari V, Durry G (2007) Development of a compact CO2 sensor open to the atmosphere and based on near-infrared laser technology at 2.68 μm. Appl Phys B 86: 743–748. doi:10.1007/s00340-006-2568-4

    Article  Google Scholar 

  25. Joly L, Gibert F, Grouiez B, Grossel A, Parvitte B, Durry G, Zéninari V (2008) A complete study of CO2 line parameters around 4845 cm−1 for lidar applications. J Quant Spectrosc Radiat Transf 109: 426–434. doi:10.1016/j.jqsrt.2007.06.003

    Article  Google Scholar 

  26. Kaimal JC, Wyngaard JC, Haugen DA, Coté OR, Izumi Y, Caughey SJ, Readings CJ (1979) Turbulence structure in the convective boundary layer. J Atmos Sci 33:2152–2169. doi :10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2

  27. Lloyd J, Francey RJ, Mollicone D, Raupach MR, Sogachev A, Arneth A, Byers JN, Kelliher FM, Rebmann C, Valentini R, Wong S-C, Bauer G, Schulze E-D (2001) Vertical profiles, boundary layer budgets, and regional flux estimates for CO2 and its 13C/12C ratio and for water vapour above a forest/bog mosaic in central Siberia. Glob Biogeochem Cycles 15(2): 267–284

    Article  Google Scholar 

  28. Menut L, Flamant C, Pelon J, Flamant PH (1999) Urban boundary layer height determination from lidar measurements over the Paris area. Appl Opt 38: 945–954. doi:10.1364/AO.38.000945

    Article  Google Scholar 

  29. Mezaros T, Haszpra L, Gelencser A (2004) The assessment of the seasonal contribution of the anthropogenic sources to the carbon monoxide budget in Europe. Atmos Environ 38: 4147–4154. doi:10.1016/j.atmosenv.2004.04.012

    Article  Google Scholar 

  30. Pépin L, Schmidt M, Ramonet M, Worthy D, Ciais P (2002) A new gas chromatographic experiment to analyze greenhouse gases in flask samples and in ambient air in the region of Saclay, IPSL Internal Publication, No 13, Paris, France available on request

  31. Rye BJ, Hardesty RM (1993) Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound. IEEE Trans Geosci Rem Sens 31: 16. doi:10.1109/36.210440

    Article  Google Scholar 

  32. Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agric For Meteorol 122(3/4): 139–156. doi:10.1016/j.agrformet.2003.09.011

    Article  Google Scholar 

  33. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

    Google Scholar 

  34. Turnbull JC, Miller JB, Lehman SJ, Tans PP, Sparks RJ, Southon J (2006) Comparison of (CO2)-C-14, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophys Res Lett 33: L01817. doi:10.1029/2005GL024213

    Article  Google Scholar 

  35. Vila-Gueraude Arellano J, Gioli B, Miglietta F, Jonker HJJ, Baltink HK, Hutjes RWA, Holtslag AAM (2004) Entrainment process of carbon dioxide in the atmospheric boundary layer. J Geophys Res 109: D18110. doi:10.1029/2004JD004725

    Article  Google Scholar 

  36. Wang J-W (2005) Observations and simulations of synoptic, regional and local variations of atmospheric CO2. MS thesis, Colo State Univ, Boulder

  37. Wang J-W, Davis KJ, Cook BD, Bakwin PS, Yi C, Butler MP, Ricciuto DM (2005) Surface layer CO2 budget and advective contributions to measurements of net ecosystem-atmosphere exchange of CO2. Agric For Meteorol 135: 202–214. doi:10.1016/j.agrformet.2005.11.018

    Article  Google Scholar 

  38. Wang J-W, Davis KJ, Cook BD, Yi C, Butler MP, Ricciuto DM, Bakwin PS (2007) Estimating daytime CO2 fluxes over a mixed forest from tall tower mixing ratio measurements. J Geophys Res 112: D10308. doi:10.1029/2006JD007770

    Article  Google Scholar 

  39. Worthy DEJ, Levin I, Trivett NBA, Kuhlmann AJ, Hopper JF, Ernst MK (1998) Seven years of continuous methane observations at a remote boreal site in Ontario, Canada. J Geophys Res 103(D13): 15995–16007. doi:10.1029/98JD00925

    Article  Google Scholar 

  40. Yi C, Anderson DE, Burns SP, Turnipseed AA, Monson RK (2004) Examining advection effects on eddy flux measurements at the Niwot Ridge AmeriFlux Site in the Colorado Rocky Mountains, American Geophysical Union, Fall Meeting 2004, abstract #B51A-0929

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fabien Gibert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gibert, F., Xuéref-Rémy, I., Joly, L. et al. A Case Study of CO2, CO and Particles Content Evolution in the Suburban Atmospheric Boundary Layer Using a 2-μm Doppler DIAL, a 1-μm Backscatter Lidar and an Array of In-situ Sensors. Boundary-Layer Meteorol 128, 381–401 (2008). https://doi.org/10.1007/s10546-008-9296-8

Download citation

Keywords

  • Carbon dioxide
  • Carbon monoxide
  • Differential absorption lidar
  • Doppler lidar
  • Suburban atmospheric boundary layer
  • Lidar