Skip to main content

Subgrid-Scale Dynamics of Water Vapour, Heat, and Momentum over a Lake

Abstract

We examine the dynamics of turbulence subgrid (or sub-filter) scales over a lake surface and the implications for large-eddy simulations (LES) of the atmospheric boundary layer. The analysis is based on measurements obtained during the Lake-Atmosphere Turbulent EXchange (LATEX) field campaign (August–October, 2006) over Lake Geneva, Switzerland. Wind velocity, temperature and humidity profiles were measured at 20 Hz using a vertical array of four sonic anemometers and open-path gas analyzers. The results indicate that the observed subgrid-scale statistics are very similar to those observed over land surfaces, suggesting that the effect of the lake waves on surface-layer turbulence during LATEX is small. The measurements allowed, for the first time, the study of subgrid-scale turbulent transport of water vapour, which is found to be well correlated with the transport of heat, suggesting that the subgrid-scale modelling of the two scalars may be coupled to save computational resources during LES.

This is a preview of subscription content, access via your institution.

References

  • Albertson JD, Parlange MB (1999a) Surface length scales and shear stress: Implications for land-atmosphere interaction over complex terrain. Water Resour Res 35: 2121–2132. doi:10.1029/1999WR900094

    Article  Google Scholar 

  • Albertson JD, Parlange MB (1999b) Natural integration of scalar fluxes from complex terrain. Adv Water Resour 23: 239–252. doi:10.1016/S0309-1708(99)00011-1

    Article  Google Scholar 

  • Assouline S, Tyler SW, Tanny J, Cohen S, Bou-Zeid E, Parlange MB et al (2008) Evaporation from three water bodies of different sizes and climates: measurements and scaling analysis. Adv Water Resour 31: 160–172. doi:. doi:10.1016/j.advwatres.2007.07.003

    Article  Google Scholar 

  • Bardina J, Ferziger JH, Reynolds WC (1980) Improved subgrid scale models for large eddy simulation. American Institute of Aeronautics and Astronautics Pap 80–1357

  • Bou-Zeid E, Meneveau C, Parlange MB (2004) Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour Res 40: W02505. doi:10.1029/2003WR002475

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange MB (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17: 025105. doi:10.1063/1.1839152

    Article  Google Scholar 

  • Bou-Zeid E, Parlange MB, Meneveau C (2007) On the parameterization of surface roughness at regional scales. J Atmos Sci 64: 216–227. doi:10.1175/JAS3826.1

    Article  Google Scholar 

  • Bradbrook KF, Lane SN, Richards KS, Biron PM, Roy AG (2000) Large eddy simulation of periodic flow characteristics at river channel confluences. J Hydraul Res 38: 207–215

    Google Scholar 

  • Brocchini M, Peregrine DH (2001a) The dynamics of strong turbulence at free surfaces. Part 1. Description. J Fluid Mech 449: 225–254. doi:10.1017/S0022112001006012

    Article  Google Scholar 

  • Brocchini M, Peregrine DH (2001b) The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions. J Fluid Mech 449: 255–290. doi:10.1017/S0022112001006024

    Article  Google Scholar 

  • Brown AR, Derbyshire SH, Mason PJ (1994) Large-eddy simulation of stable atmospheric boundary-layers with a revised stochastic subgrid model. Q J R Meteorol Soc 120: 1485–1512. doi:10.1002/qj.49712052004

    Article  Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere: theory, history, and applications. Reidel, Dordrecht, Holland, p 299

    Google Scholar 

  • Brutsaert W (1998) Land-surface water vapor and sensible heat flux: spatial variability, homogeneity, and measurement scales. Water Resour Res 34: 2433–2442. doi:10.1029/98WR01340

    Article  Google Scholar 

  • Chamecki M, Meneveau C, Parlange MB (2007) The local structure of atmospheric turbulence and its effect on the Smagorinsky model for large eddy simulation. J Atmos Sci 64: 1941–1958. doi:10.1175/JAS3930.1

    Article  Google Scholar 

  • Clark RA, Ferziger JH, Reynolds WC (1979) Evaluation of sub-grid-scale models using an accurately simulated turbulent-flow. J Fluid Mech 91: 1–16. doi:10.1017/S002211207900001X

    Article  Google Scholar 

  • DeCosmo J, Katsaros KB, Smith SD, Anderson RJ, Oost WA, Bumke K et al (1996) Air-sea exchange of water vapor and sensible heat: the humidity exchange over the sea (HEXOS) results. J Geophys Res-Oceans 101: 12001–12016. doi:10.1029/95JC03796

    Article  Google Scholar 

  • Edson J, Crawford T, Crescenti J, Farrar T, Frew N, Gerbi G et al (2007) The coupled boundary layers and air-sea transfer experiment in low winds. Bull Amer Meteorol Soc 88: 341–356. doi:10.1175/BAMS-88-3-341

    Article  Google Scholar 

  • Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3: 1760–1765. doi:10.1063/1.857955

    Article  Google Scholar 

  • Higgins CW, Parlange MB, Meneveau C (2003) Alignment trends of velocity gradients and subgrid-scale fluxes in the turbulent atmospheric boundary layer. Boundary-Layer Meteorol 109: 59–83. doi:10.1023/A:1025484500899

    Article  Google Scholar 

  • Higgins CW, Meneveau C, Parlange MB (2007) The effect of filter dimension on the subgrid-scale stress, heat flux, and tensor alignments in the atmospheric surface layer. J Atmos Ocean Technol 24: 360–375. doi:10.1175/JTECH1991.1

    Article  Google Scholar 

  • Katul GG, Parlange MB (1995) Analysis of land-surface heat fluxes using the orthonormal wavelet approach. Water Resour Res 31: 2743–2749. doi:10.1029/95WR00003

    Article  Google Scholar 

  • Kays WM (1994) Turbulent Prandtl number – Where are we? J Heat Transfer 116: 284–295. doi:10.1115/1.2911398

    Article  Google Scholar 

  • Keylock CJ, Hardy RJ, Parsons DR, Ferguson RI, Lane SN, Richards KS (2005) The theoretical foundations and potential for large-eddy simulation (LES) in fluvial geomorphic and sedimentological research. Earth Sci Rev 71: 271–304. doi:10.1016/j.earscirev.2005.03.001

    Article  Google Scholar 

  • Kleissl J, Meneveau C, Parlange MB (2003) On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer. J Atmos Sci 60: 2372–2388. doi :10.1175/1520-0469(2003)060<2372:OTMAVO>2.0.CO;2

    Article  Google Scholar 

  • Kleissl J, Parlange MB, Meneveau C (2004) Field experimental study of dynamic Smagorinsky models in the atmospheric surface layer. J Atmos Sci 61: 2296–2307. doi :10.1175/1520-0469(2004)061<2296: FESODS>2.0.CO;2

    Article  Google Scholar 

  • Lilly DK (1967) The representation of small scale turbulence in numerical simulation experiments. In: IBM Scientific computing symposium on environmental sciences, White Plains, New York, pp 195–209

  • Liu SW, Meneveau C, Katz J (1994) On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J Fluid Mech 275: 83–119. doi:10.1017/S0022112094002296

    Article  Google Scholar 

  • Mason PJ (1989) Large-eddy simulation of the convective atmospheric boundary-layer. J Atmos Sci 46: 1492–1516. doi :10.1175/1520-0469(1989)046<1492:LESOTC>2.0.CO;2

    Article  Google Scholar 

  • Mason PJ, Brown AR (1999) On subgrid models and filter operations in large eddy simulations. J Atmos Sci 56: 2101–2114. doi :10.1175/1520-0469(1999)056<2101:OSMAFO>2.0.CO;2

    Article  Google Scholar 

  • Mason PJ, Thomson DJ (1992) Stochastic backscatter in large-eddy simulations of boundary-layers. J Fluid Mech 242: 51–78. doi:10.1017/S0022112092002271

    Article  Google Scholar 

  • Meneveau C (1994) Statistics of turbulence subgrid-scale stresses – necessary conditions and experimental tests. Phys Fluids 6: 815–833. doi:10.1063/1.868320

    Article  Google Scholar 

  • Meneveau C, Katz J (2000) Scale-invariance and turbulence models for large-eddy simulation. Annu Rev Fluid Mech 32: 1–32. doi:10.1146/annurev.fluid.32.1.1

    Article  Google Scholar 

  • Mitsuishi A, Hasegawa Y, Kasagi N (2003): Large eddy simulation of mass transfer across an air-water interface at high schmidt numbers. In: The 6th ASME-JSME thermal engineering joint conference, Hawai, USA, paper number TED-AJ03-231.

  • Moeng CH (1984) A large-eddy-simulation model for the study of planetary boundary-layer turbulence.. J Atmos Sci 41: 2052–2062. doi :10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2

    Article  Google Scholar 

  • Moin P, Squires K, Cabot W, Lee S (1991) A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids A 3: 2746–2757. doi:10.1063/1.858164

    Article  Google Scholar 

  • O’Sullivan PL, Biringen S, Huser A (2001) A priori evaluation of dynamic subgrid models of turbulence in square duct flow. J Eng Math 40: 91–108. doi:10.1023/A:1017552106889

    Article  Google Scholar 

  • Parlange MB, Eichinger WE, Albertson JD (1995) Regional-scale evaporation and the atmospheric boundary-layer. Rev Geophys 33: 99–124. doi:10.1029/94RG03112

    Article  Google Scholar 

  • Patton EG, Sullivan PP, Moeng CH (2005) The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmos Sci 62: 2078–2097. doi:10.1175/JAS3465.1

    Article  Google Scholar 

  • Piomelli U (1999) Large-eddy simulation: achievements and challenges. Prog Aerosp Sci 35: 335–362. doi:10.1016/S0376-0421(98)00014-1

    Article  Google Scholar 

  • Pitsch H, Steiner H (2000) Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys Fluids 12: 2541–2554. doi:10.1063/1.1288493

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge, UK, p 771

    Google Scholar 

  • Pope SB (2004) Ten questions concerning the large-eddy simulation of turbulent flows. N J Phys 6: 771. doi:10.1088/1367-2630/6/1/035

    Article  Google Scholar 

  • Porte-Agel F (2004) A scale-dependent dynamic model for scalar transport in large-eddy simulations of the atmospheric boundary layer. Boundary-Layer Meteorol 112: 81–105. doi:10.1023/B:BOUN.0000020353.03398.20

    Article  Google Scholar 

  • Porte-Agel F, Meneveau C, Parlange MB (1998) Some basic properties of the surrogate subgrid-scale heat flux in the atmospheric boundary layer. Boundary-Layer Meteorol 88: 425–444. doi:10.1023/A:1001521504466

    Article  Google Scholar 

  • Porte-Agel F, Parlange MB, Meneveau C, Eichinger WE, Pahlow M (2000) Subgrid-scale dissipation in the atmospheric surface layer: Effects of stability and filter dimension. J Hydromet 1: 75–87. doi :10.1175/1525-7541(2000)001<0075:SSDITA>2.0.CO;2

    Article  Google Scholar 

  • Porte-Agel F, Pahlow M, Meneveau C, Parlange MB (2001a) Atmospheric stability effect on subgrid- scale physics for large-eddy simulation. Adv Water Resour 24: 1085–1102. doi:10.1016/S0309-1708(01)00039-2

    Article  Google Scholar 

  • Porte-Agel F, Parlange MB, Meneveau C, Eichinger WE (2001) A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J Atmos Sci 58: 2673–2698. doi :10.1175/1520-0469(2001)058<2673:APFSOT>2.0.CO;2

    Article  Google Scholar 

  • Sagaut P (2003) Large eddy simulation for incompressible flows. Springer-Verlag, Berlin, p 426

    Google Scholar 

  • Scotti A, Meneveau C, Lilly DK (1993) Generalized Smagorinsky model for anisotropic grids. Phys Fluids A 5: 2306–2308. doi:10.1063/1.858537

    Article  Google Scholar 

  • Shen L, Yue DKP (2001) Large-eddy simulation of free-surface turbulence. J Fluid Mech 440: 75–116. doi:10.1017/S0022112001004669

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations: I The basic experiment. Mon Weather Rev 91: 99–164. doi :10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

    Article  Google Scholar 

  • Stoll R, Porte-Agel F (2006) Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour Res 42: W01409. doi:10.1029/2005WR003989

    Article  Google Scholar 

  • Sullivan PP, McWilliams JC, Moeng CH (2000) Simulation of turbulent flow over idealized water waves. J Fluid Mech 404: 47–85. doi:10.1017/S0022112099006965

    Article  Google Scholar 

  • Sullivan PP, Horst TW, Lenschow DH, Moeng CH, Weil JC (2003) Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J Fluid Mech 482: 101–139. doi:10.1017/S0022112003004099

    Article  Google Scholar 

  • Sullivan PP, Edson JB, Horst TW, Wyngaard JC, Kelly M (2006) Subfilter scale fluxes in the marine surface layer: results from the ocean horizontal array turbulence study (OHATS). In: 17th Symposium on boundary layers and turbulence, San Diego, U.S.A.

  • Sullivan PP, Mcwilliams JC, Melville WK (2007) Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers. J Fluid Mech 593: 405–452. doi:10.1017/S002211200700897X

    Article  Google Scholar 

  • Tao B, Katz J, Meneveau C (2002) Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements. J Fluid Mech 457: 35–78. doi:10.1017/S0022112001007443

    Article  Google Scholar 

  • Tong CN, Wyngaard JC, Brasseur JG (1999) Experimental study of the subgrid-scale stresses in the atmospheric surface layer. J Atmos Sci 56: 2277–2292. doi :10.1175/1520-0469(1999)056<2277:ESOTSS>2.0.CO;2

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Quart J Roy Meteorol Soc 106: 85–100. doi:10.1002/qj.49710644707

    Article  Google Scholar 

  • Wood N (2000) Wind flow over complex terrain: a historical perspective and the prospect for large-eddy modelling. Boundary-Layer Meteorol 96: 11–32. doi:10.1023/A:1002017732694

    Article  Google Scholar 

  • Yimer I, Campbell I, Jiang LY (2002) Estimation of the turbulent Schmidt number from experimental profiles of axial velocity and concentration for high-Reynolds-number jet flows. Can Aeronaut Space J 48: 195–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elie Bou-Zeid.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vercauteren, N., Bou-Zeid, E., Parlange, M.B. et al. Subgrid-Scale Dynamics of Water Vapour, Heat, and Momentum over a Lake. Boundary-Layer Meteorol 128, 205–228 (2008). https://doi.org/10.1007/s10546-008-9287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-008-9287-9

Keywords

  • Large-eddy simulation
  • Non-linear model
  • Smagorinsky model
  • Turbulent Prandtl number
  • Turbulent Schmidt number