Skip to main content
Log in

Improvement and Application of the Similarity Saltation Model: Wind-Tunnel Experimental Investigation and Numerical Simulation of the Vertical Sand Mass Flux Distribution in the Saltation Layer

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Based upon comparisons between published experimental data and simulated results on the vertical sand flux distribution in the saltation layer, Shao’s similarity saltation model has been greatly improved by correcting the average vertical particle lift-off velocity and using a more suitable universal roughness length. By the improved model, the vertical sand flux profile over the bare, dry and loose uniform sandy surface, which is quite representative of real desert surfaces, can be reproduced very well. Meanwhile, the surface transport rate and the characteristic and average saltation heights have been simulated and analyzed in detail, disclosing their relationships with friction velocity, particle size and roughness length, and the possible underlying mechanisms. Besides, the average particle lift-off velocity and the average mean vertical aerodynamic action upon the ascending particle, which determine the saltation process, are explicitly expressed by parameters involved in the similarity model, and their relationships with friction velocity, particle size and roughness length are also described concisely. The corrected average particle lift-off velocity makes it possible to investigate the characteristic particle trajectory, whose initial velocity equals the average lift-off velocity, so as to estimate the average particle against surface impacting velocity and the average aerodynamic action upon the saltation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagnold RA (1941) The physics of blown sand and desert dunes. Chapman and Hall, 265 pp

  • Bauer BO, Houserb CA, Nickling WG (2004) Analysis of velocity profile measurements from wind-tunnel experiments with saltation. Geomorphology 59: 81–98

    Article  Google Scholar 

  • Bullard JE (2006) Arid geomorphology. Prog Phys Geogr 30: 542–552

    Article  Google Scholar 

  • Butterfield GR (1999) Near-bed mass flux profiles in aeolian sand transport: high-resolution measurements in a wind-tunnel. Earth Surf Proc Land 24: 393–412

    Article  Google Scholar 

  • Dong Z, Qian G (2007) Characterizing the height profile of the flux of wind-eroded sediment. Environ Geol 51: 835–845

    Article  Google Scholar 

  • Dong Z, Wang H, Liu X, Zhao A (2002a) Velocity profile of a sand cloud blowing over a gravel surface. Geomorphology 45: 277–289

    Article  Google Scholar 

  • Dong Z, Liu X, Wang H, Zhao A, Wang X (2002b) The flux profile of a blowing sand cloud: a wind-tunnel investigation. Geomorphology 49: 219–230

    Article  Google Scholar 

  • Dong Z, Liu X, Wang X (2002c) Aerodynamic roughness of gravel surfaces. Geomorphology 43: 17–31

    Article  Google Scholar 

  • Dong Z, Wang H, Liu X, Wang X (2004a) The blown sand flux over a sandy surface: a wind-tunnel investigation on the fetch effect. Geomorphology 57: 117–127

    Article  Google Scholar 

  • Dong Z, Wang H, Liu X, Wang X (2004b) A wind-tunnel investigation of the influences of fetch length on the flux profile of a sand cloud blowing over a gravel surface. Earth Surf Proc Land 29: 1613–1626

    Article  Google Scholar 

  • Gillette DA, Fryrear DW, Xiao JB, Stockton P, Ono D, Helm PJ, Gill TE, Ley T (1997) Large-scale variability of wind erosion mass flux rates at Owens Lake 1. Vertical profiles of horizontal mass fluxes of wind-eroded particles with diameter greater than 50 μm. J Geophys Res 102: 25977–25987

    Google Scholar 

  • Gillette DA, Marticorena B, Bergametti G (1998) Change in the roughness height by saltating grains: experimental assessment, test of theory and operational parameterization. J Geophys Res 103: 6203–6209

    Article  Google Scholar 

  • Ishizuka M, Mikami M, Yamada Y, Zeng F, Gao W (2005) Aeolian dust experiment on climate impact, 2005: wind erosion process observed in the south of the Taklimakan Desert. Proceedings ADEC Workshop Aeolian Dust Exp Clim Impact 2005, N20061897, 135–138

  • Laurent B, Marticorena B, Bergametti G, Mei F (2006) Modeling mineral dust emissions from Chinese and Mongolian deserts. Global Planet Change 52: 121–141

    Article  Google Scholar 

  • Li ZS, Ni JR, Mendoza C (2004) An analytic expression for wind-velocity profile within the saltation layer. Geomorphology 60: 359–369

    Article  Google Scholar 

  • Liu X, Dong Z (2004) Experimental investigation of the concentration profile of a blowing sand cloud. Geomorphology 60: 371–381

    Article  Google Scholar 

  • Liu X, Dong Z, Wang X (2006) Wind-tunnel modeling and measurements of the flux of wind-blown sand. J Arid Environ 66: 657–672

    Article  Google Scholar 

  • Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle 1. Design of a soil-derived dust emission scheme. J Geophys Res 100: 16415–16430

    Article  Google Scholar 

  • Marticorena B, Bergametti G, Aumont B, Callot Y, N’Doumé C, Legrand M (1997a) Modeling the atmospheric dust cycle 2. Simulation of Saharan dust sources. J Geophys Res 102: 4387–4404

    Article  Google Scholar 

  • Marticorena B, Bergametti G, Gillette D, Belnap J (1997b) Factors controlling threshold friction velocity in semiarid and arid areas of the United States. J Geophys Res 102: 23277–23287

    Article  Google Scholar 

  • Mikami M, Abe O, Du M, Fujita K, Hayashi M, Iwasaka Y, Sujuki J, Yabuki S, Zhou J (2002) The impact of Aeolian dust on climate: Sino-Japanese cooperative project ADEC. J Arid Land Stud 11:211–222

    Google Scholar 

  • Mikami M, Yamada Y, Ishizuka M, Ishimaru T, Gao W, Zeng F (2005) Measurement of saltation process over gobi and sand dunes in the Taklimakan desert, China, with newly developed sand particle counter. J Geophys Res 110: D18S02 doi:10.1029/2004JD004688

    Article  Google Scholar 

  • Mikami M, Shi GY, Uno I, Yabuki S, Iwasaka Y, Yasui M, Aoki T, Tanaka TY, Kurosaki Y, Masuda K, Uchiyama A, Matsuki A, Sakai T, Takemi T, Nakawo M, Seino N, Ishizuka M, Satake S, Fujita K, Hara Y, Kai K, Kanayama S, Hayashi M, Du M, Kanai Y, Yamada Y, Zhang XY, Shen Z, Zhou H, Abe O, Nagai T, Tsutsumi Y, Chiba M, Suzuki J (2006) Aeolian dust experiment on climate impact: an overview of Japan–China joint project ADEC. Global Planet Change 52: 142–172

    Article  Google Scholar 

  • Ni JR, Li ZS, Mendoza C (2002) Vertical profiles of Aeolian sand mass flux. Geomorphology 49: 205–218

    Article  Google Scholar 

  • Owen PR (1964) Saltation of uniform grains in air. J Fluid Mech 20: 225–242

    Article  Google Scholar 

  • Raupach MR (1991) Saltation layers, vegetation canopies and roughness lengths. Acta Mech Suppl. 1: 135–144

    Google Scholar 

  • Rice MA, Willetts BB, McEwan IK (1995) An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed. Sedimentology 42: 695–706

    Article  Google Scholar 

  • Sawford BL, Guest FM (1991) Lagrangian statistical simulation of the turbulent motion of heavy particles. Boundary-Layer Meteorol 54: 147–166

    Article  Google Scholar 

  • Shao Y (2000) Physics and modelling of wind erosion. Kluwer Academic Publishers, Dordrecht, p 393

    Google Scholar 

  • Shao Y (2004) Simplification of a dust emission scheme and comparison with data. J Geophy Res 109 doi:10.1029/2003JD004372

  • Shao Y (2005) A similarity theory for saltation and application to Aeolian mass flux. Boundary-Layer Meteorol 115: 319–338

    Article  Google Scholar 

  • Shao Y, Leslie LM (1997) Wind erosion prediction over the Australian continent. J Geophys Res 102: 30091–30105

    Article  Google Scholar 

  • Shao Y, Li A (1999) Numerical modelling of saltation in atmospheric surface layer. Boundary-Layer Meteorol 91: 199–225

    Article  Google Scholar 

  • Shao Y, Mikami M (2005a) Aeolian dust experiment on climate impact, 2005: a similarity theory for heterogeneous saltation. Proceedings ADEC Workshop Aeolian Dust Exp Clim Impact 2005, N20061897, 13–14

  • Shao Y, Mikami M (2005b) Heterogeneous saltation: theory, observation and comparison. Boundary-Layer Meteorol 115: 359–379

    Article  Google Scholar 

  • Shao Y, Raupach MR (1992) The overshoot and equilibration of saltation. J Geophys Res 97: 20559–20564

    Google Scholar 

  • Shao Y, Raupach MR, Findlater PA (1993) Effect of saltation bombardment on the entrainment of dust by wind. J Geophys Res 98: 12719–12726

    Article  Google Scholar 

  • Shao Y, Raupach MR, Leys JF (1996) A model for predicting Aeolian sand drift and dust entrainment on scales from paddock to region. Aust J Soil Res 34: 309–342

    Article  Google Scholar 

  • Spies PJ, McEwan IK, Butterfield GR (2000) One-dimensional transitional behaviour in saltation. Earth Surf Proc Land 25: 505–518

    Article  Google Scholar 

  • Ungar JE, Haff PK (1987) Steady state saltation in air. Sedimentology 34: 289–299

    Article  Google Scholar 

  • Wilson JD (2000) Trajectory models for heavy particles in atmospheric turbulence: comparison with observations. J Appl Meteorol 39: 1894–1912

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Yuan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, WY., Lü, SH. & Shen, ZB. Improvement and Application of the Similarity Saltation Model: Wind-Tunnel Experimental Investigation and Numerical Simulation of the Vertical Sand Mass Flux Distribution in the Saltation Layer. Boundary-Layer Meteorol 127, 313–332 (2008). https://doi.org/10.1007/s10546-007-9257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-007-9257-7

Keywords

Navigation