Skip to main content
Log in

Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In-situ sodar and lidar measurements were coupled with numerical simulations for studying a sea-breeze event in a flat coastal area of the North Sea. The study’s aims included the recognition of the dynamics of a sea-breeze structure, and its effects on the lower troposphere stratification and the three-dimensional (3D) pollutant distribution. A sea breeze was observed with ground-based remote sensing instruments and analysed by means of numerical simulations using the 3D non-hydrostatic atmospheric model Meso-NH. The vertical structure of the lower troposphere was experimentally determined from the lidar and sodar measurements, while numerical simulations focused on the propagation of the sea breeze inland. The sea-breeze front, the headwind, the thermal internal boundary layer, the gravity current and the sea-breeze circulation were observed and analysed. The development of a late stratification was also observed by the lidar and simulated by the model, suggesting the formation of a stable multilayered structure. The transport of passive tracers inside the sea breeze and their redistribution above the gravity current was simulated too. Numerical modelling showed that local pollutants may travel backward to the sea above the gravity current at relatively low speed due to the shearing between the landward gravity current and the seaward synoptic wind. Such dynamic conditions may enhance an accumulation of pollutants above coastal industrial areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbs DJ (1986). Sea breeze interactions along a concave coastline in southern Australia: observations and numerical modeling study. Mon Wea Rev 114: 831–848

    Article  Google Scholar 

  • Augustin P, Delbarre H, Lohou F, Campistron B, Puygrenier V, Cachier H and Lombardo T (2006). Investigation of local meteorological events and their relationship with ozone and aerosols during an ESCOMPTE photochemical episode. Ann Geophys 24: 2809–2822

    Article  Google Scholar 

  • Beyrich F (1996). Boundary-layer structure and photochemical pollution in the Harz Mountains—An observational study. Atmos Environ 30: 1271–1281

    Article  Google Scholar 

  • Beyrich F (1997). Mixing height estimation from sodar data—a critical discussion. Atmos Environ 31: 3941–3953

    Article  Google Scholar 

  • Boone A, Calvet JC and Noilhan J (1999). Inclusion of a third soil layer in a land-surface scheme using the force-restore method. J Appl Meteorol 38: 1611–1630

    Article  Google Scholar 

  • Bougeault P and Lacarrere P (1989). Parametrization of orography induced turbulence in a mesobeta-scale model. Mon Wea Rev 117: 1872–1890

    Article  Google Scholar 

  • Bougeault P, Sadourny R (2001) Dynamique de l’Océan et de l’atmosphère. In: de l’Ecole Polytechnique (ed), Palaiseau, France, 298 pp

  • Calvet JC, Noilhan J, Roujean JL, Bessemoulin P, Cabelguenne M, Olioso A and Wigneron JP (1998). An interactive vegetation SVAT model tested against data from six contrasting sites. Agric Forest Meteorol 92: 73–95

    Article  Google Scholar 

  • Charnock H (1955). Wind stress on a water surface. Quart J Roy Meteorol Soc 81: 639–640

    Article  Google Scholar 

  • Cuxart J, Bougeault P and Redelsperger JL (2000). A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart J Roy Meteorol Soc 126: 1–30

    Article  Google Scholar 

  • Deardorff JW (1972). Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29: 91–115

    Article  Google Scholar 

  • Delbarre H, Augustin P, Saïd F, Campistron B, Bénech B, Lohou F, Puygrenier V, Moppert C, Cousin F, Fréville P and Fréjafon E (2005). Ground-based remote sensing observation of the complex behaviour of the Marseille boundary layer during ESCOMPTE. Atmos Res 74: 403–433

    Article  Google Scholar 

  • Déqué M, Drevton A, Braun A and Cariolle D (1994). The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Climate Dyn 10: 249–266

    Article  Google Scholar 

  • Durand P, Briere S and Druilhet A (1989). A sea-land transition observed during the coast experiment. J Atmos Sci 46: 96–116

    Article  Google Scholar 

  • Finkele K, Hacker JM, Kraus H and Byron-Scott RAD (1995). A complete sea-breeze circulation cell derived from aircraft observations. Boundary-Layer Meteorol 73: 299–317

    Article  Google Scholar 

  • Finkele K (1998). Inland and offshore propagation speeds of a sea breeze from simulation and measurements. Boundary-Layer Meteorol 87: 307–329

    Article  Google Scholar 

  • Frizzola JA and Fisher EL (1963). A series of sea-breeze observations in the New-York city area. J Appl Meteorol 2: 722–739

    Article  Google Scholar 

  • Garratt JR (1990). The Internal Boundary-Layer—A review. Boundary-Layer Meteorol 50: 171–203

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary-layer. Cambridge University Press, Cambridge, UK, 316 pp

  • Gilliam RC, Raman S and Devdutta S Niyogi (2004). Observational and numerical study on the influence of large-scale flow direction and coastline shape on sea-breeze evolution. Boundary-Layer Meteorol 111: 275–300

    Article  Google Scholar 

  • Gossard EE, Gaynor JE, Zamora JE and Neff WD (1985). Finestructure of elevated stable layers observed by sounder and in situ tower sensors. J Atmos Sci 42: 2156–2169

    Article  Google Scholar 

  • Harris L and Kotamarthi VR (2005). The characteristics of the Chicago Lake breeze and its effects on trace particle transport: results from an episodic event simulation. J Appl Meteorol 44: 1637–1654

    Article  Google Scholar 

  • Holton JR (1992) An Introduction to dynamic meteorology. In: Int Geophys Ser (3rd edn.), Vol 48. Academic Press, London, UK, 511 pp

  • Jamima P and Lakshminarasimhan J (2004). Numerical simulation of sea-breeze characteristics observed at tropical coastal site, Kalpakkam. Proc Indian Acad Sci (Earth Planet Sci) 113: 197–209

    Google Scholar 

  • Kambezidis HD, Weidauer D, Melas D and Ulbricht M (1998). Air quality in the Athens basin during sea-breeze and non-sea-breeze days using laser remote sensing technique. Atmos Environ 32: 2173–2182

    Article  Google Scholar 

  • Kolev IN, Skakalova TS, Parvanov O, Kaprielov BK, Donev E and Ivanov CD (1996). Lidar visualization of the aerosol stratification and the internal boundary layer in the coastal area in the case of breeze circulation. Proc SPIE 3052: 300–305

    Article  Google Scholar 

  • Kölsch HJ, Rairoux P, Wolf JP and Wöste L (1992). Comparative study of nitric oxide immission in the cities of Lyon, Geneva and Stuttgart using a mobile differential absorption lidar system. Appl Phys B 54: 89–94

    Article  Google Scholar 

  • Kouchi A, Ohba R and Shao Y (1999). Gas diffusion in a convection layer near a coastal region. J Wind Eng Ind Aerod 81: 171–180

    Article  Google Scholar 

  • Kunz GJ, Becker E, O’Dowd CD and Leeuw G (2002). Lidar observations of atmospheric boundary layer structure and sea spray aerosol plumes generation and transport at Mace Head, Ireland (PARFORCE experiment). J Geophys Res 107: 1–14

    Article  Google Scholar 

  • Lafore JP, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Héreil P, Mascart P, Masson V, Pinty JP, Redelsperger JL, Richard E and Vilà-Gueraude Arellano J (1998). The Meso-NH atmospheric simulation system. Part I: adiabatic formulation and control simulations. Ann Geophys 16: 90–109

    Google Scholar 

  • Luhar AK, Sawford BL, Hacker JM and Rayner KN (1998). The Kwinana coastal fumigation study: 2—growth of the thermal internal boundary layer. Boundary-Layer Meteorol 89: 385–405

    Article  Google Scholar 

  • Mahrt L (1999). Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90: 375–396

    Article  Google Scholar 

  • Masson V (2000). A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorol 94: 357–397

    Article  Google Scholar 

  • Melfi SH, Spinhirne JD, Chou SH and Palm SP (1985). Lidar observations of the vertically organized convection in the planetary boundary layer over ocean. J Clim Appl Meteorol 24: 806–821

    Article  Google Scholar 

  • Menut L, Flamant C, Pelon J and Flamant PH (1999). Urban boundary layer height determination from lidar measurements over the Paris area. Appl Opt 38: 945–954

    Google Scholar 

  • Miao JF, Kroon LJM, Vilà-Gueraude Arellano J and Holtslag AAM (2003). Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorol Atmos Phys 84: 157–170

    Article  Google Scholar 

  • Miller STK, Keim BD, Talbot RW and Mao H (2003). Sea breeze: structure, forecasting, and impacts. Rev Geophys 41: 1/1–31

    Article  Google Scholar 

  • Morcrette JJ (1991). Radiation and cloud radiative properties in the European center for medium range weather forecasts forecasting system. J Geophys Res 96: 9121–9132

    Article  Google Scholar 

  • Nazir M, Khan FI and Husain T (2005). Revised estimates for continuous shoreline fumigation: a PDF approach. J Hazard Mater A 118: 53–65

    Article  Google Scholar 

  • Noilhan J and Planton S (1989). A simple parameterization of land surface processes for meteorological models. Mon Wea Rev 117: 536–549

    Article  Google Scholar 

  • Noilhan J and Mahfouf JF (1996). The ISBA land surface parametrization scheme. Glob Planet Change 13: 145–159

    Article  Google Scholar 

  • Oh IB, Kim YK, Lee HW and Kim CH (2006). An observational and numerical study of the effects of the late sea breeze on ozone distributions in the Busan metropolitan area, Korea. Atmos Environ 40: 1284–1298

    Article  Google Scholar 

  • Ohba R, Shao Y and Kouchi A (1998). A wind tunnel and numerical investigation of turbulent dispersion in coastal atmospheric boundary layers. Boundary-Layer Meteorol 87: 255–273

    Article  Google Scholar 

  • Pedlosky J (1986) Geophysical fluid dynamics, 2nd edn. Springer-Verlag, 710 pp

  • Physick WL (1980). Numerical experiments on the inland penetration of the sea breeze. Quart J Roy Meteorol Soc 106: 735–746

    Article  Google Scholar 

  • Puygrenier V, Lohou F, Campistron B, Saïd F, Pigeon G, Benech B and Serça D (2005). Investigation on the fine structure of sea breeze during ESCOMPTE experiment. Atmos Res 74: 329–353

    Article  Google Scholar 

  • Rao MP, Casadio S, Fiocco G, Lena F, Cacciani M, Calisse PG, Fua D and Sarra A (1995). Observation of lump structures in the nocturnal atmospheric boundary layer with Doppler sodar and Raman lidar. Geophys Res Lett 22: 2505–2508

    Article  Google Scholar 

  • REMTECH (2000) Sodar manual. Remtech 98 pp

  • Simpson JE (1994) Sea breeze and Local Wind. Cambridge University Press, Cambridge, UK, 234 pp

  • Srinivas CV and Venkatesan R (2005). A simulation study of dispersion of air borne radionuclides from a nuclear power plant under a hypothetical accidental scenario at a tropical coastal site. Atmos Environ 39: 1497–1511

    Article  Google Scholar 

  • Steyn DG (1998). Scaling the vertical structure of sea breezes. Boundary-Layer Meteorol 86: 505–524

    Article  Google Scholar 

  • Steyn DG (2003). Scaling the vertical structure of sea breezes revisited. Boundary-Layer Meteorol 107: 177–188

    Article  Google Scholar 

  • Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, the Netherlands, 666 pp

  • Thomasson A, Geffroy S, Fréjafon E, Weidauer D, Fabian R, Godet Y, Nominé N, Ménard T, Rairoux P, Moeller D and Wolf JP (2002). LIDAR mapping of ozone-episode dynamics in Paris and intercomparison with spot analysers. Appl Phys B 74: 453–459

    Article  Google Scholar 

  • Venkatram A (1986). An examination of methods to estimate the height of the coastal internal boundary layer. Boundary-Layer Meteorol 36: 149–156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Talbot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talbot, C., Augustin, P., Leroy, C. et al. Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea. Boundary-Layer Meteorol 125, 133–154 (2007). https://doi.org/10.1007/s10546-007-9185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-007-9185-6

Keywords

Navigation