Advertisement

Boundary-Layer Meteorology

, Volume 124, Issue 3, pp 361–381 | Cite as

Characteristics of intermittent turbulence in the upper stable boundary layer over Greenland

  • Clemens Drüe
  • Günther Heinemann
Original Paper

Abstract

The experiment IGLOS (Investigation of the Greenland Boundary Layer Over Summit) was conducted in June and July 2002 in the central plateau of the Greenland inland ice. The German research aircraft Polar2, equipped with the turbulence measurement system Meteopod, was used to investigate turbulence and radiation flux profiles near research station “Summit Camp”. Aircraft measurements are combined with measurements of radiation fluxes and turbulent quantities made from a 50 m tower at Summit Camp operated by Eidgenössische Technische Hochschule (ETH) Zürich. During all six flight missions, well-developed stable boundary layers were found. Even in high-wind conditions, the surface inversion thickness did not exceed roughly 100 m. The turbulent height of the stable boundary layer (SBL) was found to be much smaller than the surface inversion thickness. Above the surface layer, significant turbulent fluxes occurred only intermittently in intervals on the order of a few kilometres. Turbulent event fraction in the upper SBL shows the same dependence on gradient Richardson number as reported for near-surface measurements. Clear-air longwave radiation divergence was always found to contribute significantly to the SBL heat budget. In low-wind cases, radiative cooling even turned out to be dominant.

Keywords

Aircraft-based study Greenland summit Intermittent turbulence Stable boundary layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bange J and Roth R (1999). Helicopter-borne measurements in the nocturnal boundary layer over land - a case study. Boundary-Layer Meteorol 92: 295–325 CrossRefGoogle Scholar
  2. Böhme T, Hauf T and Lehmann V (2004). Investigation of short-period gravity waves with the Lindenberg 482 MHz tropospheric wind profiler. Quart J Roy Meteorol Soc 130(603): 2933–2952 CrossRefGoogle Scholar
  3. Cassano JJ, Parish TR and King JC (2001). Evaluation of turbulent surface flux relationships for the stable surface layer over halley, Antarctica. Mon Wea Rev 129: 26–46 CrossRefGoogle Scholar
  4. Colbeck SC (1997). Model of wind pumping for layered snow. J Glaciol 43: 60–65 Google Scholar
  5. Coulter RL and Doran JC (2002). Spatial and temporal occurrences of intermittent turbulence during CASES-99. Boundary-Layer Meteorol 105: 329–349 CrossRefGoogle Scholar
  6. Cullen NJ, Steffen K and Blanken PD (2007). Nonstationarity of turbulent heat fluxes at Summit, Greenland. Boundary-Layer Meteorol 122: 439–455 CrossRefGoogle Scholar
  7. Doran JC (2004). Characteristics of intermittent turbulent temperature fluxes in stable conditions. Boundary-Layer Meteorol 112: 241–255 CrossRefGoogle Scholar
  8. Drüe C and Heinemann G (2001). Airborne investigation of Arctic boundary layer fronts over the marginal ice zone of the Davis Strait. Boundary-Layer Meteorol 101: 261–292 CrossRefGoogle Scholar
  9. Drüe C and Heinemann G (2002). Turbulence structures over the marginal ice zone under flow parallel to the ice edge: measurements and parameterizations. Boundary-Layer Meteorol 102: 83–116 CrossRefGoogle Scholar
  10. Drüe C, Heinemann G (2003) Investigation of the greenland atmospheric boundary layer over summit 2002 (IGLOS). Field phase report., Vol. 447 of Reports on Polar and Marine Research., 81 ppGoogle Scholar
  11. Finnigan JJ, Clement R, Malhi Y, Leuning R and Cleugh H (2003). A re-evaluation of long-term flux measurement techniques part I: averaging and coordinate rotation. Boundary-Layer Meteorol 107(1): 1–48 CrossRefGoogle Scholar
  12. Foken T and Wichura B (1996). Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78: 83–105 CrossRefGoogle Scholar
  13. Forrer J and Rotach MW (1997). On the structure in the stable boundary layer over the Greenland ice sheet. Boundary-Layer Meteorol 85: 111–136 CrossRefGoogle Scholar
  14. Garratt J and Brost R (1981). Radiative cooling effects within and above the nocturnal boundary layer. J Atmos Sci 38(12): 2730–2746 CrossRefGoogle Scholar
  15. Handorf D (1996) Zur Parameterisierung der stabilen atmosphärischen Grenzschicht über einem antarktischen Schelfeis, Vol. 204 of Reports on Polar Research 133 ppGoogle Scholar
  16. Handorf D, Foken T and Kottmeier C (1999). The stable atmosphere boundary layer over an antarctic ice sheet. Boundary-Layer Meteorol 91: 165–189 CrossRefGoogle Scholar
  17. Heinemann G (1998) Katabatic wind and Boundary Layer Front Experiment around Greenland (“KABEG 97”), Vol. 269 of Reports on Polar Research. 94 ppGoogle Scholar
  18. Heinemann G (1999). The KABEG’97 field experiment: an aircraft-based study of katabatic wind dynamics over the Greenland ice sheet. Boundary-Layer Meteorol 93: 75–116 CrossRefGoogle Scholar
  19. Heinemann G (2002). Aircraft-based measurements of turbulence structures in the katabatic flow over Greenland. Boundary-Layer Meteorol 103: 49–81 CrossRefGoogle Scholar
  20. Heinemann G (2004). Local similarity properties of the continously turbulent stable boundary layer over greenland. Boundary-Layer Meteorol 112: 283–305 CrossRefGoogle Scholar
  21. Hoch SW (2005) Radiative flux divergence in the surface boundary layer. A study based on observations at Summit, Greenland. Ph.D. thesis, ETH Zürich, Switzerland, 180 ppGoogle Scholar
  22. Holtslag AAM and Nieuwstadt FTM (1986). Scaling the atmospheric boundary layer. Boundary-Layer Meteorol 36: 201–209 CrossRefGoogle Scholar
  23. Horst TW (1997). A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Boundary-Layer Meteorol 82: 219–233 CrossRefGoogle Scholar
  24. Howell JF and Sun J (1999). Surface-layer fluxes in stable conditions. Boundary-Layer Meteorol 90: 495–520 CrossRefGoogle Scholar
  25. Kaimal JC and Finnigan JJ (1994). Atmospheric boundary layer flows. Oxford University Press, New York, 289 pp Google Scholar
  26. King J (1990). Some measurements of turbulence over an antarctic ice shelf. Quart J Roy Meteorol Soc 116: 379–400 CrossRefGoogle Scholar
  27. Kondo J, Kanechika O and Yasuda N (1978). Heat and momentum transfers under strong stability in the atmospheric surface layer. J Atmos Sci 35: 1012–1021 CrossRefGoogle Scholar
  28. Lenschow DH, Mann J and Kristensen L (1994). How long is long enough when measuring fluxes an other turbulence statistics?. J Atmos Oceanic Technol 11: 661–673 CrossRefGoogle Scholar
  29. Mahrt L (1981). Modeling the depth of the stable boundary-layer. Boundary-Layer Meteorol 21: 3–19 CrossRefGoogle Scholar
  30. Mahrt L (1985). Vertical structure and turbulence in the very stable boundary layer. J Atmos Sci 42(22): 2333–2349 CrossRefGoogle Scholar
  31. Mahrt L (1998). Stratified atmospheric boundary layers and breakdown of model. Theor Comput Fluid Dynam 11: 263–279 CrossRefGoogle Scholar
  32. Mahrt L (1999). Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90: 375–396 CrossRefGoogle Scholar
  33. Mahrt L, Sun J, Blumen W, Delany T and Onkley S (1998). Nocturnal boundary layer regimes. Boundary-Layer Meteorol 88: 255–278 CrossRefGoogle Scholar
  34. Moncrieff J, Clemens R, Finnigan J, Meyers T (2004) Averaging, detrending, and filtering of eddy covariance time series. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis, Vol. 29 of Atmospheric and oceanographic sciences library. Springer Berlin Chapt. 2, pp. 7–32, ISBN: 978-1-4020-2264-7Google Scholar
  35. Nieuwstadt FTM (1984). Some aspects of the turbulent stable boundary layer. Boundary-Layer Meteorol 30: 1–55 CrossRefGoogle Scholar
  36. Oerlemans J and Vugts H (1993). A meteorological experiment in the ablation zone of the Greenland ice sheet. Bull Amer Meteorol Soc 74: 355–365 CrossRefGoogle Scholar
  37. Ohmura A, Gilgen H, Hegner H, Müller G, Wild M, Dutton E, Forgan B, Fröhlich C, Philipona R, Heimo A, König-Langlo G, McArthur B, Pinker R, Whitlock CH and Dehne K (1998). Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research. Bull Amer Meteorol Soc 79: 2115–2136 CrossRefGoogle Scholar
  38. Schelander P, Hoch SW, Bourgeois CS, Ohmura A, Calanca P (2004) Climatic conditions during the ETH measurement campaign at summit, Greenland, 2001–2002. In: EGU 1st general assembly, 25–30 april 2004, Nice, France, Vol.6 of geophysical research AbstractsGoogle Scholar
  39. Stull RB (1988). An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp Google Scholar
  40. Van de Wiel BJH, Ronda RJ, Moene AF, De Bruin HAR and Holtslag AAM (2002). Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: a bulk model. J Atmos Sci 59: 942–958 CrossRefGoogle Scholar
  41. Vickers D and Mahrt L (1997). Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Technol 14: 512–526 CrossRefGoogle Scholar
  42. Vickers D and Mahrt L (2003). The cospectral gap and turbulent flux calculations. J Atmos Oceanic Technol 20: 660–672 CrossRefGoogle Scholar
  43. Vörsmann P (1990). Meteopod, an airborne system for measurements of mean wind, turbulence and other meteorological parameters. Onde Electrique 70: 31–38 Google Scholar
  44. Xiao J, Bintanja R, Déry S, Mann GW and Taylor PA (2000). An intercomparison among four models of blowing snow. Boundary-Layer Meteorol 97: 109–135 CrossRefGoogle Scholar
  45. Zilintinkevich S and Baklanov A (2002). Calculation of the height of the stable boundary layer in practical applications. Boundary-Layer Meteorol 105: 389–409 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  1. 1.Institut für Meteorologie und KlimatologieUniversität HannoverHannoverGermany
  2. 2.Umweltmeteorologie, Fachbereich Geographie/GeowissenschaftenUniversität TrierTrierGermany

Personalised recommendations