Boundary-Layer Meteorology

, Volume 124, Issue 3, pp 383–403 | Cite as

Impact of surface heterogeneity on a buoyancy-driven convective boundary layer in light winds

  • Dominique CouraultEmail author
  • Philippe Drobinski
  • Yves Brunet
  • Pierre Lacarrere
  • Charles Talbot
Original Paper


Land-use practices such as deforestation or agricultural management may affect regional climate, ecosystems and water resources. The present study investigates the impact of surface heterogeneity on the behaviour of the atmospheric boundary layer (ABL), at a typical spatial scale of 1 km. Large-eddy simulations, using an interactive soil–vegetation–atmosphere surface scheme, are performed to document the structure of the three-dimensional flow, as driven by buoyancy forces, over patchy terrain with different surface characteristics (roughness, soil moisture, temperature) on each individual patch. The patchy terrain consists of striped and chessboard patterns. The results show that the ABL strongly responds to the spatial configuration of surface heterogeneities. The stripe configuration made of two patches with different soil moisture contents generates the development of a quasi- two-dimensional inland breeze, whereas a three-dimensional divergent flow is induced by chessboard patterns. The feedback of such small-scale atmospheric circulations on the surface fluxes appears to be highly non-linear. The surface sensible and latent heat fluxes averaged over the 25-km2 domain may vary by 5% with respect to the patch arrangement.


Coherent structures Inland breeze Large-eddy simulation Surface–atmosphere feedback Turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson MC, Kustas WP, Norman, JM (2003) Upscaling and downscaling – a regional view of the soil–plant–atmosphere continuum. Agronomy J 95:1408–1423CrossRefGoogle Scholar
  2. Atkinson BW, Zhang JW (1996) Mesoscale shallow convection in the atmosphere. Rev Geophys 34:403–431CrossRefGoogle Scholar
  3. Barnston AG, Schickeldanz PT (1984) The effect of irrigation on warm season precipitation in the southern Great Plains. J Clim Appl Meteorol 23:865–888CrossRefGoogle Scholar
  4. Bastin S, Drobinski P (2005) Temperature and wind velocity oscillations along a gentle slope during sea-breeze events. Boundary-Layer Meteorol 114:573–594CrossRefGoogle Scholar
  5. Bastin S, Champollion C, Bock O, Drobinski P, Masson F (2005) On the use of GPS tomography to investigate water vapor variability during a Mistral/sea breeze event in southeastern France. Geophys Res Let 32 L05808, doi:10.1029/2004GL021907Google Scholar
  6. Bastin S, Drobinski P (2006) Sea breeze induced mass transport over complex terrain in southeastern France: a case study. Quart J Roy Meteorol Soc 132:405–423CrossRefGoogle Scholar
  7. Bastin S, Champollion C, Bock O, Drobinski P, Masson F (2007) Diurnal cycle of water vapor as documented by a dense GPS network in a coastal area during ESCOMPTE-IOP2. J Appl Meteorol 46(2):167–182Google Scholar
  8. Brunsell NA, Gillies RR (2003) Scale issues in land–atmosphere interactions: implications for remote sensing of the surface energy balance. Agric For Meteorol 117:203–221CrossRefGoogle Scholar
  9. Bunzli D, Schmid HP (1998) The influence of surface texture on regionally aggregated evaporation and energy partitioning. J Atmos Sci 55:961–972CrossRefGoogle Scholar
  10. Courault D, Seguin B, Olioso A (2005) Review about estimation of evapotranspiration from remote sensing data: from empirical to numerical modelling approach. Irrigation Drainage System 19:223–249CrossRefGoogle Scholar
  11. Courault D, Lacarrère P, Clastre P, Lecharpentier P, Jacob F, Marloie O, Prévot L, Olioso A (2003) Estimation of surface fluxes in a small agricultural area using the 3D atmospheric model Meso-NH and remote sensing data. Can J Remote Sensing 29:1–14Google Scholar
  12. Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart J Roy Meteorol Soc 126:1–30CrossRefGoogle Scholar
  13. Deardorff JW (1972) Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29:91–115CrossRefGoogle Scholar
  14. Deardorff JW (1974) Three-dimensional numerical study of turbulence in an entraining mixed layer. Boundary-Layer Meteorol 7:199–226Google Scholar
  15. Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J Geophys Res 83:1889–1903CrossRefGoogle Scholar
  16. De Ridder K, Gallée H. (1998) Land surface induced regional climate change in southern Israel. J Appl Meteorol 37:1470–1485CrossRefGoogle Scholar
  17. Drobinski P, Brown RA, Flamant PH, Pelon J (1998) Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar. Boundary-Layer Meteorol 88:343–361CrossRefGoogle Scholar
  18. Drobinski P, Foster RC (2003) On the origin of near-surface streaks in the neutrally-stratified planetary boundary layer. Boundary-Layer Meteorol 108:247–256CrossRefGoogle Scholar
  19. Drobinski P, Carlotti P, Newsom RK, Banta RM., Foster, RC, Redelsperger JL (2004) The structure of the near-neutral atmospheric surface layer. J Atmos Sci 61:699–714CrossRefGoogle Scholar
  20. Etling D, Brown RA (1993) Roll vortices in the planetary boundary layer: a review. Boundary-Layer Meteorol 21:215–248CrossRefGoogle Scholar
  21. Hadfield MG, Cotton WR, Pielke RA (1991) Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part I: small scale circulation with zero wind. Boundary-Layer Meteorol 57:79–114CrossRefGoogle Scholar
  22. Hadfield MG, Cotton WR, Pielke RA (1992) Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: the effect of changes in wave-length and wind speed. Boundary-Layer Meteorol. 58:307–327CrossRefGoogle Scholar
  23. Hartmann J, Kottmeier C, Raasch S (1997) Roll vortices and boundary-layer development during a cold air outbreak. Boundary-Layer Meteorol 84:45–65CrossRefGoogle Scholar
  24. Hasager CB, Nielsen NW, Jensen NO, Boegh E, Christensen JH, Dellwik E, Soegaard H (2003) Effective roughness calculated from satellite-derived land cover maps and hedge-information used in a weather forecasting model. Boundary-Layer Meteorol 109:227–254CrossRefGoogle Scholar
  25. Heinemann G, Kerschgens M (2005) Comparison of methods for area-averaging surface energy fluxes over heterogeneous land surfaces using high-resolution non-hydrostatic simulations. Int J Clim 25:379–403CrossRefGoogle Scholar
  26. Jacquemin B, Noilhan J (1990) Validation of a land surface parameterization using the HAPEX-MOBILHY data set. Boundary-Layer Meteorol 52:93–134CrossRefGoogle Scholar
  27. Kuettner JP (1971) Cloud bands in the Earth’s atmosphere. Tellus 23:404–425CrossRefGoogle Scholar
  28. Lafore, JP, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Héreil P, Mascart P, Masson V, Pinty JP, Redelsperger JL, Richard E, Vilà-Guerau de Arellano J, (1998) The Méso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulation. Ann Geophys 16:90–109CrossRefGoogle Scholar
  29. Lemonsu A, Masson V (2002) Simulation of a summer urban breeze over Paris. Boundary-Layer Meteorol 104:463–490CrossRefGoogle Scholar
  30. Letzel MO, Raasch S (2003) Large eddy simulation of thermally induced oscillations in the convective boundary layer. J Atmos Sci 47:2328–2341CrossRefGoogle Scholar
  31. Mahfouf JF, Richard E, Mascart P (1987) The influence of soil and vegetation on the development of mesoscale circulations. J Climate Appl Meteorol 26:1483–1495CrossRefGoogle Scholar
  32. Mahrt L, MacPherson I, Desjardins R (1994) Observations of fluxes over heterogeneous surfaces. Boundary-Layer Meteorol 67:345–367CrossRefGoogle Scholar
  33. Miura Y (1986) Aspect ratios of longitudinal rolls and convection cells observed during cold air outbreaks. J Atmos Sci 43:26–39CrossRefGoogle Scholar
  34. Moeng CH, Sullivan PP (1994) A comparison of shear- and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51:999–1022CrossRefGoogle Scholar
  35. Noilhan J, Mahfouf JF (1996) The ISBA land surface parameterisation scheme. Global Planetary Change 13:145–159CrossRefGoogle Scholar
  36. Olioso A, Braud I, Chanzy A, Demarty J, Ducros JY, Gaudu JC, Gonzalez-Sosa E, Lewan E, Marloie O, Ottlé C, Prévot L, Thony, Autret H, Bethenod O, Bonnefond JM, Brugier N, Buis JP, Calvet JC, Caselles V, Chauki H, Coll C (2002) Monitoring energy and mass transfers during the Alpilles-ReSeDA experiment. Agronomie 22:597–610CrossRefGoogle Scholar
  37. Ookouchi Y, Segal M, Kessler RC, Pielke RA (1984) Evaluation of soil moisture effects on the generation and modification of mesoscale circulations. Mon Wea Rev 112:2281–2291CrossRefGoogle Scholar
  38. Patton EG, Sullivan PP, Moeng CH (2005) The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmos Sci 62:2078–2097CrossRefGoogle Scholar
  39. Pielke RA, Avissar R (1990) Influence of landscape structure on local and regional climate. Landscape Ecol 4:133–155CrossRefGoogle Scholar
  40. Pielke RA (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39:151–177CrossRefGoogle Scholar
  41. Redelsperger JL, Sommeria G (1981) Méthode de représentation de la turbulence d’échelle inférieure à la maille pour un modèle tri-dimensionnel de convection nuageuse. Boundary-Layer Meteorol 21:509–530CrossRefGoogle Scholar
  42. Redelsperger JL, Sommeria G (1986) Three dimensional simulation of a convective storm: sensitivity studies on subgrid model suitable for surface layer and free stream turbulence. Boundary-Layer Meteorol 43:2619–2635Google Scholar
  43. Segal M, Avissar R, McCumber MC, Pielke RA (1988) Evaluation of vegetation effects on the generation and modification of mesoscale circulations. J Atmos Sci 45:2269–2292CrossRefGoogle Scholar
  44. Segal M, Pan Z, Turner RW, Takle ES (1998) On the potential impact of irrigated areas in North America on summer rainfall caused by large-scale systems. J Appl Meteorol 37:325–331CrossRefGoogle Scholar
  45. Sommeria G (1976) Three dimensional simulation of turbulent processes in an undisturbed trade wind boundary layer. J Atmos Sci. 33: 216–241CrossRefGoogle Scholar
  46. Stohlgren TJ, Chase TN, Pielke RA, Kittel TGF, Baron JS (1998) Evidence that local use pratices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas. Global Change Biol 4:495–504CrossRefGoogle Scholar
  47. Stoll R, Porté-Agel F (2006a) Effect of roughness on surface boundary conditions for large-eddies simulations. Boundary-Layer Meteorol 118:169–187CrossRefGoogle Scholar
  48. Stoll R, Porté-Agel F (2006b) Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain.Water Resour Res 42(1):1409–1409CrossRefGoogle Scholar
  49. Tomas S, Masson V (2006) A parametrization of the third-order moments for the dry convective boundary layer. Boundary-Layer Meteorol 120:437–454CrossRefGoogle Scholar
  50. Walko RL, Cotton WR, Pielke RA (1992) Large eddy simulations of the effects of hilly terrain on the convective boundary layer. Boundary-Layer Meteorol 58:133–150CrossRefGoogle Scholar
  51. Weckwerth TM, Wilson JW, Wakimoto RM, Crook NA (1997) Horizontal convective rolls: determining the environmental conditions supporting their existence and characteristics. Mon Wea Rev 125:505–526CrossRefGoogle Scholar
  52. Wetzel P, Chang JT (1988) Evapotranspiration from non uniform surfaces: a first approach for short-term numerical weather prediction. Mon Wea Rev 116:600–621CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  • Dominique Courault
    • 1
    Email author
  • Philippe Drobinski
    • 2
  • Yves Brunet
    • 3
  • Pierre Lacarrere
    • 4
  • Charles Talbot
    • 5
  1. 1.Unité Climat Sol Environnement, INRAAvignonFrance
  2. 2.Institut Pierre Simon Laplace/Service d’AéronomieUniversité Pierre et Marie CurieParisFrance
  3. 3.INRA, UR1263 EPHYSEVillenave d’OrnonFrance
  4. 4.CNRMToulouseFrance
  5. 5.Ecosystèmes Littoraux et Côtiers - FRE 2816Université du Littoral Côte d’OpaleWimereuxFrance

Personalised recommendations