Boundary-Layer Meteorology

, Volume 119, Issue 3, pp 431–447 | Cite as

50 Years of the Monin–Obukhov Similarity Theory

Article

Abstract

This historical survey shows that Obukhov’s 1946 fundamental paper on a universal length scale for exchange processes in the surface layer was the basis for the derivation of the similarity theory by Monin and Obukhov in 1954. A brief overview of the experiments and findings used to formulate the universal functions in the presently used form is given. Finally, the current status of the theory is described, covering topics such as the accuracy of the universal functions and the turbulent Prandtl number.

Keywords

Eddy covariance History of micrometeorology Monin–Obukhov similarity theory Obukhov length Surface layer Universal function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, F.: 1940, ‘Untersuchungen über den Wärmehaushalt der Erdoberfläche in verschiedenen Klimagebieten’, Reichsamt f. Wetterdienst, Wiss. Abh. Bd. VIII, Nr. 2, 1–82.Google Scholar
  2. Andreas, E. L., Claffey, K. J., Fairall, C. W., Grachev, A. A., Guest, P. S., Jordan, R. E., and Persson, P. O. G.: 2004, ‘Measurements of the von Kármán Constant in the Atmospheric Surface Layer – Further Discussions’, in 16th Conference on Boundary Layers and Turbulence, Portland ME, Amer. Meteorol. Soc., paper 7.2, pp. 1–7.Google Scholar
  3. Barrett E.W. and Suomi V.E. (1949). ‘Preliminary Report on Temperature Measurement by Sonic Means’. J. Meteorol. 6: 273–276Google Scholar
  4. Bernhardt K.-H. (1995). ‘Zur Interpretation der Monin–Obuchovschen Länge’. Meteorol. Z. 4:81–82Google Scholar
  5. Bovscheverov V.M. and Voronov V.P. (1960). ‘Akustitscheskii fljuger (Acoustic rotor)’. Izv. AN SSSR, ser. Geofiz. 6: 882–885Google Scholar
  6. Bradley E.F. (1968). ‘A Shearing Stress Meter for Micrometeorological Studies’. Quart. J. Roy. Meteorol. Soc. 94:380–387CrossRefGoogle Scholar
  7. Businger J.A., Miyake M., Inoue E., Mitsuta Y., and Hanafusa T. (1969). ‘Sonic Anemometer Comparison and Measurements in the Atmospheric Surface Layer’. J. Meteorol. Soc. Japan 47:1–12Google Scholar
  8. Businger J.A., Wyngaard J.C., Izumi Y., and Bradley E.F. (1971). ‘Flux–profile Relationships in the Atmospheric Surface Layer’. J. Atmos. Sci. 28:181–189CrossRefGoogle Scholar
  9. Businger J.A. and Yaglom A.M. (1971). ‘Introduction to Obukhov’s Paper “Turbulence in an Atmosphere with a Non-Uniform Temperature” ’. Boundary-Layer Meteorol. 2:3–6CrossRefGoogle Scholar
  10. Businger J.A. (1988). ‘A Note on the Businger–Dyer Profiles’. Boundary-Layer Meteorol. 42:145–151CrossRefGoogle Scholar
  11. Culf A.D., Foken T., and Gash J.H.C. (2004). ‘The Energy Balance Closure Problem’. In: Kabat P., Claussen M. et al. (eds). Vegetation, Water, Humans and the Climate A New Perspective on an Interactive System. Springer, Berlin, Heidelberg, pp. 159–166Google Scholar
  12. Denmead D.T. and Bradley E.F. (1985). ‘Flux–Gradient Relationships in a Forest Canopy’. In: Hutchison B.A., Hicks B.B.(eds). The Forest-Atmosphere Interaction. D. Reidel Publ. Comp., Dordrecht, Boston, London, pp. 421–442Google Scholar
  13. Dyer A.J., Hicks B.B., and King K.M. (1967). ‘The Fluxatron – A Revised Approach to the Measurement of Eddy Fluxes in the Lower Atmosphere’. J. Appl. Meteorol. 6:408–413CrossRefGoogle Scholar
  14. Dyer A.J. and Hicks B.B. (1970). ‘Flux–Gradient Relationships in the Constant Flux Layer’. Quart. J. Roy. Meteorol. Soc. 96:715–721CrossRefGoogle Scholar
  15. Dyer A.J. (1974). ‘A Review of Flux-Profile-Relationships’. Boundary-Layer Meteorol. 7:363–372CrossRefGoogle Scholar
  16. Dyer A.J., Garratt J.R., Francey R.J., McIlroy I.C., Bacon N.E., Hyson P., Bradley E.F., Denmead D.T., Tsvang L.R., Volkov J.A., Kaprov B.M., Elagina L.G., Sahashi K., Monji N., Hanafusa T., Tsukamoto O., Frenzen P., Hicks B.B., Wesely M., Miyake M., and Shaw W.J. (1982). ‘An International Turbulence Comparison Experiment (ITCE 1976)’. Boundary-Layer Meteorol. 24:181–209CrossRefGoogle Scholar
  17. Foken T., Kitajgorodskij S.A., and Kuznecov O.A. (1978). ‘On the Dynamics of the Molecular Temperature Boundary Layer above the Sea’. Boundary-Layer Meteorol. 15:289–300CrossRefGoogle Scholar
  18. Foken T. and Kuznecov O.A. (1978). ‘Die wichtigsten Ergebnisse der gemeinsamen Expedition “KASPEX-76” des Institutes für Ozeanologie Moskau und der Karl-Marx-Universität Leipzig’. Beitr. Meeresforsch. 41:41–47Google Scholar
  19. Foken T. and Skeib G. (1983). ‘Profile Measurements in the Atmospheric Near-Surface Layer and the Use of Suitable Universal Functions for the Determination of the Turbulent Energy Exchange’. Boundary-Layer Meteorol. 25:55–62CrossRefGoogle Scholar
  20. Foken T. (1990). ‘Turbulenter Energieaustausch zwischen Atmosphäre und Unterlage – Methoden, meßtechnische Realisierung sowie ihre Grenzen und Anwendungsmöglichkeiten’. Ber. Dt. Wetterdienstes 180:287Google Scholar
  21. Foken T. and Bernhardt K. (1994). ‘Atmospheric Boundary Layer Research in Central and East European Countries with KAPG, 1981–1990’. Geophys. Rep. 01:1–58Google Scholar
  22. Foken T. and Oncley S.P. (1995). ‘Results of the Workshop “Instrumental and Methodical Problems of Land Surface Flux Measurements”’. Bull. Amer. Meteorol. Soc. 76:1191–1193Google Scholar
  23. Foken T. (2003). Angewandte Meteorologie, Mikrometeorologische Methoden. Springer, Heidelberg, 289 pp.Google Scholar
  24. Garratt J.R. (1980). ‘Surface Influence upon Vertical Profiles in the Atmospheric Near Surface Layer’. Quart. J. Roy. Meteorol. Soc. 106:803–819CrossRefGoogle Scholar
  25. Garratt J.R. and Hicks B.B. (1990). ‘Micrometeorological and PBL Experiments in Australia’. Boundary-Layer Meteorol. 50:11–32CrossRefGoogle Scholar
  26. Garratt J.R. (1992). The Atmospheric Boundary Layer. Cambridge University Press, Cambridge, 316 pp.Google Scholar
  27. Geiger R. (1927). Das Klima der bodennahen Luftschicht. Friedr. Vieweg & Sohn, Braunschweig, 246 pp.Google Scholar
  28. Geiger R., Aron R.H., and Todhunter P. (1995). The Climate Near the Ground. Friedr. Vieweg & Sohn Verlagsges. mbH, Braunschweig, Wiesbaden, 528 pp.Google Scholar
  29. Hanafusa T., Fujitana T., Kobori Y., and Mitsuta Y. (1982). ‘A New Type Sonic Anemometer–Thermometer for Field Operation’. Papers in Meteorol. & Geophys. 33:1–19CrossRefGoogle Scholar
  30. Handorf D., Foken T., and Kottmeier C. (1999). ‘The Stable Atmospheric Boundary Layer over an Antarctic Ice Sheet’. Boundary-Layer Meteorol. 91:165–186CrossRefGoogle Scholar
  31. Haugen D.H. (eds) (1973). ‘Workshop on Micrometeorology’. Amer. Meteorol. Soc., Boston, 392 pp.Google Scholar
  32. Hess G.D., Hicks B.B., and Yamada T. (1981). ‘The Impact of the Wangara Experiment’. Boundary-Layer Meteorol. 20: 135–174CrossRefGoogle Scholar
  33. Hicks B.B. (1986). ‘Book Review: ‘“International Turbulence Comparison Experiment ITCE 1981”’. Boundary-Layer Meteorol. 34:417–419CrossRefGoogle Scholar
  34. Högström U. (1974). ‘A Field Study of the Turbulent Fluxes of Heat Water Vapour and Momentum at a ‘Typical’ Agricultural Site’. Quart. J. Roy. Meteorol. Soc. 100:624–639Google Scholar
  35. Högström U. (1985). ‘Von Kármán Constant in Atmospheric Boundary Flow: Reevaluated’. J. Atmos. Sci. 42: 263–270CrossRefGoogle Scholar
  36. Högström U. (1988). ‘Non-dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-evaluation’. Boundary-Layer Meteorol. 42:55–78CrossRefGoogle Scholar
  37. Högström U. (1990). ‘Analysis of Turbulence Structure in the Surface Layer with a Modified Similarity Formulation for Near Neutral Conditions’. J. Atmos. Sci. 47:1949–1972CrossRefGoogle Scholar
  38. Högström U. (1996). ‘Review of Some Basic Characteristics of the Atmospheric Surface Layer’. Boundary-Layer Meteorol. 78:215–246CrossRefGoogle Scholar
  39. Högström U. and Bergstrom H. (1996). ‘Organized Turbulence Structures in the Near-Neutral Atmospheric Surface Layer’. J. Atmos. Sci. 53:2452–2464CrossRefGoogle Scholar
  40. Izumi, Y.: (1971), Kansas 1968 Field Program Data Report. Bedford, MA, Air Force Cambridge Research Papers, No. 379, 79 pp.Google Scholar
  41. Johansson C., Smedman A., Högström U., Brasseur J.G., and Khanna S. (2001). ‘Critical Test of Monin–Obukhov Similarity During Convective Conditions’. J. Atmos. Sci. 58:1549–1566CrossRefGoogle Scholar
  42. Kader B.A. and Yaglom A.M. (1972). ‘Heat and Mass Transfer Laws for Fully Turbulent Wall Flows’. Int. J. Heat Mass Transfer 15:2329–2350CrossRefGoogle Scholar
  43. Kader B.A. and Yaglom A.M. (1990). ‘Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layers’. J. Fluid Mech. 212:637–662CrossRefGoogle Scholar
  44. Kaimal J.C. and Businger J.A. (1963). ‘A Continuous Wave Sonic Anemometer–Thermometer’. J. Climate Appl. Meteorol. 2:156–164CrossRefGoogle Scholar
  45. Kaimal J.C. and Wyngaard J.C. (1990). ‘The Kansas and Minnesota Experiments’. Boundary-Layer Meteorol. 50:31–47CrossRefGoogle Scholar
  46. Kantha L.H. and Clayson C.A. (2000). Small Scale Processes in Geophysical Fluid Flows. Academic Press, San Diego, 883 pp.Google Scholar
  47. von Kármán T. and Howarth L. (1938). ‘On the Statistical Theory of Isotropic Turbulence’. Proc. Roy. Soc. London A 164:192–215CrossRefGoogle Scholar
  48. Kleinschmidt E. (eds) (1935). Handbuch der meteorologischen Instrumente und ihrer Auswertung. Springer, Berlin, 733 pp.Google Scholar
  49. Kolmogorov A.N. (1941a). ‘Lokalnaja struktura turbulentnosti v neschtschimaemoi schidkosti pri otschen bolschich tschislach Reynoldsa (The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers)’. Dokl. AN SSSR 30:299–303Google Scholar
  50. Kolmogorov A.N. (1941b). ‘Rassejanie energii pri lokolno-isotropoi turbulentnosti (Dissipation of Energy in Locally Isotropic Turbulence)’. Dokl. AN SSSR 32:22–24Google Scholar
  51. Kondo J. and Sato T. (1982). ‘The Determination of the von Kármán Constant’. J. Meteorol. Soc. Japan 60:461–471Google Scholar
  52. Lee X., Massman W.J. and Law B. (eds) (2004). Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Kluwer, Dordrecht, 250 pp.Google Scholar
  53. Lettau H. (1939). Atmosphärische Turbulenz. Akad. Verlagsges., Leipzig, 283 pp.Google Scholar
  54. Lettau H. (1949). ‘Isotropic and Non-Isotropic Turbulence in the Atmospheric Surface Layer’. Geophys. Res. Pap. 1:86Google Scholar
  55. Lettau H.H. (eds) (1957). Exploring the Atmosphere’s First Mile, Vol1. Pergamon Press, London, New York, 376 pp.Google Scholar
  56. Lumley J.L. and Yaglom A.M. (2001). ‘A Century of Turbulence’. Flow Turbulence Combust. 66:241–286CrossRefGoogle Scholar
  57. McBean G.A., Bernhardt K., Bodin S., Litynska Z., van Ulden A.P., and Wyngaard J.C. (1979). ‘The Planetary Boundary Layer’. WMO, Note 530:201Google Scholar
  58. Mitsuta Y. (1966). ‘Sonic Anemometer-Thermometer for General Use’. J. Meteorol. Soc. Japan Ser. II 44:12–24Google Scholar
  59. Miyake M., Stewart R.W., Burling R.W., Tsvang L.R., Kaprov B.M., and Kuznecov O.A. (1971). ‘Comparison of Acoustic Instruments in an Atmospheric Flow Over Water’. Boundary-Layer Meteorol. 2:228–245CrossRefGoogle Scholar
  60. Monin A.S. and Obukhov A.M. (1954). ‘Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (Basic Laws of Turbulent Mixing in the Atmosphere Near the Ground)’. Trudy geofiz. inst. AN SSSR 24(151): 163–187Google Scholar
  61. Monin A.S. and Yaglom A.M. (1973). Statistical Fluid Mechanics: Mechanics of Turbulence, Vol 1. MIT Press, Cambridge, London, 769 pp.Google Scholar
  62. Monin A.S. and Yaglom A.M. (1975). Statistical Fluid Mechanics: Mechanics of Turbulence, Vol 2. MIT Press, Cambridge, London, 874 pp.Google Scholar
  63. Montgomery R.B. (1948). ‘Vertical Eddy Flux of Heat in the Atmosphere’. J. Meteorol. 5:265–274Google Scholar
  64. Obukhov A.M. (1946). ‘Turbulentnost’ v temperaturnoj–neodnorodnoj atmosfere (Turbulence in an Atmosphere with a Non-uniform Temperature)’. Trudy Inst. Theor. Geofiz. AN SSSR 1:95–115Google Scholar
  65. Obukhov A.M. (1951). ‘Charakteristiki mikrostruktury vetra v prizemnom sloje atmosfery (Characteristics of the Micro-structure of the Wind in the Surface Layer of the Atmosphere)’. Izv. AN SSSR, ser. Geofiz. 3:49–68Google Scholar
  66. Obukhov A.M. (1960). ‘O strukture temperaturnogo polja i polja skorostej v uslovijach konvekcii (Structure of the Temperature and Velocity Fields Under Conditions of Free Convection)’. Izv. AN SSSR, ser. Geofiz. 9:1392–1396Google Scholar
  67. Obukhov A.M. (1971). ‘Turbulence in an Atmosphere with a Non-uniform Temperature’. Boundary-Layer Meteorol. 2:7–29CrossRefGoogle Scholar
  68. Oncley S.P., Friehe C.A., Larue J.C., Businger J.A., Itsweire E.C., and Chang S.S. (1996). ‘Surface-layer Fluxes, Profiles, and Turbulence Measurements over Uniform Terrain Under Near-neutral Conditions’. J. Atmos. Sci. 53:1029–1054CrossRefGoogle Scholar
  69. Paeschke W. (1937). ‘Experimentelle Untersuchungen zum Rauhigkeitsproblem in der bodennahen Luftschicht’. Z. Geophys. 13:14–21Google Scholar
  70. Panin G.N., Tscherevitinov F.O., and Piacena C. (1982). ‘O vlijanii stratifikacii vozducha na processy vzaimodejsvija vodoema s atmosfery (About the Influence of the Stability on Air–Sea Interaction)’. Acta Hydrophys. 27:229–244Google Scholar
  71. Panofsky H.A. (1963). ‘Determination of Stress from Wind and Temperature Measurements’. Quart. J. Roy. Meteorol. Soc. 89: 85–94CrossRefGoogle Scholar
  72. Prandtl L. (1925). ‘Bericht über Untersuchungen zur ausgebildeten Turbulenz’. Z. angew. Math. Mech. 5:136–139Google Scholar
  73. Priestley C.H.B. and Swinbank W.C. (1947). ‘Vertical Transport of Heat by Turbulence in the Atmosphere’. Proc. Roy. Soc. London A 189:543–561Google Scholar
  74. Pruitt W.O., Morgan D.L., and Lourence F.J. (1973). ‘Momentum and Mass Transfer in the Surface Boundary Layer’. Quart. J. Roy. Meteorol. Soc. 99:370–386CrossRefGoogle Scholar
  75. Raupach M.R., Thom A.S., and Edwards I. (1980). ‘A Wind-Tunnel Study of Turbulent Flow Close to Regularly Arrayed Rough Surface’. Boundary-Layer Meteorol. 18:373–379CrossRefGoogle Scholar
  76. Raupach M.R., Finnigan J.J., and Brunet Y. (1996). ‘Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-layer Analogy’. Boundary-Layer Meteorol. 78:351–382CrossRefGoogle Scholar
  77. Reynolds O. (1894). ‘On the Dynamical Theory of Turbulent Incompressible Viscous Fluids and the Determination of the Criterion’. Phil. Trans. R. Soc. London A 186:123–161Google Scholar
  78. Richardson L.F. (1920). ‘The Supply of Energy from and to Atmospheric Eddies’. Proc. Roy. Soc. A 97:354–373CrossRefGoogle Scholar
  79. Schmidt W. (1925). Der Massenaustausch in freier Luft und verwandte Erscheinungen. Henri Grand Verlag, Hamburg, 118 pp.Google Scholar
  80. Schotland R.M. (1955). ‘The Measurement of Wind Velocity by Sonic Waves’. J. Meteorol. 12:386–390Google Scholar
  81. Sheppard P.A. (1947). ‘The Aerodynamic Drag of the Earth’s Surface and the Value of von Karman’s Constant in the Lower Atmosphere’. Proc. Roy. Soc. A 188:208CrossRefGoogle Scholar
  82. Stull R.B. (1988). An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp.Google Scholar
  83. Suomi V.E. (1957). ‘Sonic Anemometer – University of Wisconsin’. In: Lettau H.H. and Davidson B. (eds). Exploring the Atmosphere’s First Mile. Pergamon Press, London, New York, pp. 256–266Google Scholar
  84. Swinbank W.C. (1951). ‘The Measurement of Vertical Transfer of Heat and Water Vapor by Eddies in the Lower Atmosphere’. J. Meteorol. 8:135–145Google Scholar
  85. Swinbank W.C. (1964). ‘The Exponential Wind Profile’. Quart. J. Roy. Meteorol. Soc. 90:119–135CrossRefGoogle Scholar
  86. Swinbank W.C. (1968). ‘A Comparison between Prediction of the Dimensional Analysis for the Constant-Flux Layer and Observations in Unstable Conditions’. Quart. J. Roy. Meteorol. Soc. 94:460–467CrossRefGoogle Scholar
  87. Swinbank W.C. and Dyer A.J. (1968). ‘An Experimental Study on Mircrometeorology’. Quart. J. Roy. Meteorol. Soc. 93: 494–500CrossRefGoogle Scholar
  88. Taylor G.I. (1915). ‘Eddy Motion in the Atmosphere’. Phil. Trans. Roy. Soc. London A 215:1–26CrossRefGoogle Scholar
  89. Taylor G.I. (1938). ‘The Spectrum of Turbulence’. Proc. Roy. Soc. London A 164:476–490Google Scholar
  90. Tschalikov D.V. (1968). ‘O profilja vetra i temperatury v prizemnom sloe atmosfery pri ustojtschivoj stratifikacii (About the Wind and Temperature Profile in the Surface Layer for Stable Stratification)’. Trudy GGO 207:170–173Google Scholar
  91. Tsvang L.R., Kaprov B.M., Zubkovskij S.L., Dyer A.J., Hicks B.B., Miyake M., Stewart R.W., and McDonald J.W. (1973). ‘Comparison of Turbulence Measurements by Different Instuments; Tsimlyansk Field Experiment 1970’. Boundary-Layer Meteorol. 3:499–521CrossRefGoogle Scholar
  92. Tsvang L.R., Zubkovskij S.L., Kader B.A., Kallistratova M.A., Foken T., Gerstmann W., Przandka Z., Pretel J., Zelený J., and Keder J. (1985). ‘International Turbulence Comparison Experiment (ITCE-81)’. Boundary-Layer Meteorol. 31:325–348CrossRefGoogle Scholar
  93. Webb E.K. (1970). ‘Profile Relationships: The Log-Linear Range, and Extension to Strong Stability’. Quart. J. Roy. Meteorol. Soc. 96:67–90CrossRefGoogle Scholar
  94. Wieringa J. (1980). ‘A Revaluation of the Kansas Mast Influence on Measurements of Stress and Cup Anemometer Overspeeding’. Boundary-Layer Meteorol. 18:411–430CrossRefGoogle Scholar
  95. Wyngaard J.C., Businger J.A., Kaimal J.C., and Larsen S.E. (1982). ‘Comments on “A Revaluation of the Kansas Mast Influence on Measurements of Stress and Cup Anemometer Overspeeding”’. Boundary-Layer Meteorol. 22:245–250CrossRefGoogle Scholar
  96. Yaglom A.M. (1977). ‘Comments on Wind and Temperature Flux-Profile Relationships’. Boundary-Layer Meteorol. 11: 89–102CrossRefGoogle Scholar
  97. Yaglom A.M. (1990). ‘Alexander Mikhailovich Obukhov, 1918–1989’. Boundary-Layer Meteorol. 53:v–xiCrossRefGoogle Scholar
  98. Zilitinkevich S.S. and Tschalikov D.V. (1968). ‘Opredelenie universalnych profilej skorosti vetra i temperatury v prizemnom sloe atmosfery (Determination of Universal Profiles of Wind Velocity and Temperature in the Surface Layer of the Atmosphere)’. Izv. AN SSSR, Fiz. Atm. i Okeana 4:294–302Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of MicrometeorologyUniversity of BayreuthBayreuthGermany

Personalised recommendations