Boundary-Layer Meteorology

, Volume 118, Issue 2, pp 273–303 | Cite as

Single-Column Model Intercomparison for a Stably Stratified Atmospheric Boundary Layer

  • J. Cuxart
  • A. A. M. Holtslag
  • R. J. Beare
  • E. Bazile
  • A. Beljaars
  • A. Cheng
  • L. Conangla
  • M. Ek
  • F. Freedman
  • R. Hamdi
  • A. Kerstein
  • H. Kitagawa
  • G. Lenderink
  • D. Lewellen
  • J. Mailhot
  • T. Mauritsen
  • V. Perov
  • G. Schayes
  • G-J. Steeneveld
  • G. Svensson
  • P. Taylor
  • W. Weng
  • S. Wunsch
  • K-M. Xu
Article

Abstract

The parameterization of the stably stratified atmospheric boundary layer is a difficult issue, having a significant impact on medium-range weather forecasts and climate integrations. To pursue this further, a moderately stratified Arctic case is simulated by nineteen single-column turbulence schemes. Statistics from a large-eddy simulation intercomparison made for the same case by eleven different models are used as a guiding reference. The single-column parameterizations include research and operational schemes from major forecast and climate research centres. Results from first-order schemes, a large number of turbulence kinetic energy closures, and other models were used. There is a large spread in the results; in general, the operational schemes mix over a deeper layer than the research schemes, and the turbulence kinetic energy and other higher-order closures give results closer to the statistics obtained from the large-eddy simulations. The sensitivities of the schemes to the parameters of their turbulence closures are partially explored.

Keywords

GABLS Intercomparison Mixing coefficients Single-column models Stably stratified flows Turbulence parameterizations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Andrén, ‘Evaluation of a Turbulence Closure Scheme Suitable for Air-Pollution Applications’. J. Appl. Meteorol. 29 (1990) 224-239CrossRefGoogle Scholar
  2. K.W. Ayotte, P.P Sullivan, A. Andrén, S.C. Doney, A.A.M. Holtslag, W. G. Large, J. C. McWilliams, C. H. Moeng, M. J. Otte, J. J. Tribbia and J. C. Wyngaard, ‘An Evaluation of Neutral and Convective Planetary Boundary-Layer Parameterizations Relative to Large Eddy Simulations’. Boundary-Layer Meteorol. 79 (1996) 131-175CrossRefGoogle Scholar
  3. Beare, R. J., MacVean, M. K., Holtslag, A. A. M., Cuxart, J., Esau, I., Golaz, J -C., Jimenez, M. A., Khairoutdinov, M., Kosovic, B., Lewellen, D., Lund, T. S., Lundquist, J. K., McCabe, A., Moene, A. F., Noh, Y., Raasch, S., and Sullivan, P. P. (2006). ‘An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer’, Boundary-Layer Meteorol. In Press.Google Scholar
  4. S. Bélair, J. Mailhot, J. W. Strapp and J. I. MacPherson, ‘An Examination of Local Versus Non-Local Aspects of a TKE-based Boundary Layer Scheme in Clear Convective Conditions’. J. Appl. Meteorol. 38 (1999) 1499-1518CrossRefGoogle Scholar
  5. A. C. M Beljaars and A. A. M. Holtslag, ‘Flux Parameterization Over Land Surfaces for Atmospheric Models’. J. Appl. Meteorol. 30 (1991) 327-341CrossRefGoogle Scholar
  6. A. C. M. Beljaars, ‘Numerical Schemes for Parameterizations’, ECMWF seminar Proceedings on Numerical Methods in Atmospheric Models. U.K: Reading (1992).Google Scholar
  7. A. C. M. Beljaars, ‘The Impact of Some Aspects of the Boundary Layer Scheme in the ECMWF Model’, ECMWF Seminar Proceedings on Parameterization of Subgrid Scale Physical Processes. U.K: Reading (1995).Google Scholar
  8. Beljaars, A. C. M and Viterbo, P.: 1998, ‘Role of the Boundary Layer in a Numerical Weather Prediction Model’, (Holtslag A.A.M. and Duynkerke P.G. (eds). Clear and Cloudy Boundary Layers, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 287–304.Google Scholar
  9. A. K. Blackadar, ‘The Vertical Distribution of Wind and Turbulent Exchange in a Neutral Atmosphere’. J. Geophys. Res. 67 (1962) 3095-3102CrossRefGoogle Scholar
  10. P. Bougeault and P. Lacarrère, ‘Parameterization of Orography-Induced Turbulence in a Mesobeta-Scale Model’. Mon. Wea. Rev. 117 (1989) 1872-1890CrossRefGoogle Scholar
  11. J. Cuxart, P. Bougeault and J. L. Redelsperger, ‘A Turbulence Scheme Allowing for Mesoscale and Large-Eddy Simulations’. Quart. J. Roy. Meteorol. Soc. 126 (2000) 1-30CrossRefGoogle Scholar
  12. J. W. Deardorff, ‘Stratocumulus-Capped Mixed Layers Derived from a Three-Dimensional Model’. Boundary-Layer Meteorol. 18 (1980) 495-527CrossRefGoogle Scholar
  13. S. H. Derbyshire, ‘A ‘balanced’ Approach to Stable Boundary Layer Dynamics’. J. Atmos. Sci. 51 (1994) 3486-3504CrossRefGoogle Scholar
  14. S. H. Derbyshire, ‘Boundary Layer Decoupling Over Cold Surfaces as a Physical Boundary Instability’. Boundary-Layer Meteorol. 90 (1999) 297-325CrossRefGoogle Scholar
  15. P. G. Duynkerke, ‘Application of the E-e Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer’. J. Atmos. Sci. 45 (1988) 865-880CrossRefGoogle Scholar
  16. P. G. Duynkerke, ‘Radiation fog: a comparison of model simulations with detailed observations’. Mon. Wea. Rev. 119 (1991) 324-341CrossRefGoogle Scholar
  17. S. Galmarini, C. Beets, P. G. Duynkerke and J. Vila-Gueraude Arellano, ‘Stable Nocturnal Boundary Layers: a comparison of one-dimensional and large-eddy simulation models’. Boundary-Layer Meteorol. 88 (1998) 181-210CrossRefGoogle Scholar
  18. Garratt and Ryan, ‘The Structure of the Stably Stratified Internal Boundary Layer in Offshore Flow Over the Sea’. Boundary-Layer Meteorol. 47 (1989) 17-40CrossRefGoogle Scholar
  19. A. A. M. Holtslag and B. Boville, ‘Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model’. J. Climate 6 (1993) 1825-1842CrossRefGoogle Scholar
  20. A. A. M. Holtslag, ‘Modelling of Atmospheric Boundary Layers’. In: A. A. M. Holtslag and P. G. Duynkerke (eds.) Clear and Cloudy Boundary Layers. Amsterdam: Royal Netherlands Academy of Arts and Sciences (1998) pp. 85-110Google Scholar
  21. A. A. M. Holtslag, ‘GABLS Initiates Intercomparison for Stable Boundary Layers’. GEWEX news 13 (2003) 7-8Google Scholar
  22. S. Y. Hong and H. L. Pan, ‘Non-local Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model’. Mon. Wea. Rev. 124 (1996) 2322-2339CrossRefGoogle Scholar
  23. J. C. R. Hunt, J. C. Kaimal and J. E. Gaynor, ‘Some Observations of Turbulence Structure in Stable Layers’. Quart. J. Roy. Meteorol. Soc. 111 (1985) 793-815CrossRefGoogle Scholar
  24. A. R. Kerstein, W. T. Ashurst, S. Wunsch and V. Nilsen, ‘One-dimensional Turbulence: Vector Formulation and Application to free shear flows’. J. Fluid Mech. 447 (2001) 85-109Google Scholar
  25. A. N. Kolmogorov, ‘Dissipation of Energy in a Locally Isotropic Turbulence’. Doklady Akad. Nauk SSSR 32 (1941) 141Google Scholar
  26. B. Kosovic and J. A. Curry, ‘A Large Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer’. J. Atmos. Sci. 57 (2000) 1052-1068CrossRefGoogle Scholar
  27. J.P. Lafore, J. Stein, N. Asencio, P. Bougeault, V. Ducrocq, J. Duron, C. Fischer, P. Héreil, P. Mascart, V. Masson, J.P. Pinty, J.-L. Redelsperger, E. Richard and J. Vil‘a-Gueraude Arellano, ‘The Meso-NH Atmospheric Simulation System Part I: Adiabatic Formulation and Control Simulations’. Ann. Geophys. 16 (1998) 90-109CrossRefGoogle Scholar
  28. A. A. Lapworth, lq Factors Determining the Decrease in Surface Wind Speed Following the Evening Transition’. Quart. J. Roy. Meteorol. Soc. 129 (2003) 1945-1968CrossRefGoogle Scholar
  29. Lenderink G., Holtslag A.A.M. (2004).‘An Updated Length Scale Formulation for Turbulent Mixing in Clear and Cloudy Boundary Layers ’, Quart. J. Roy. Meteorol. Soc., in press.Google Scholar
  30. J. F. Louis, lq A Parametric Model of Vertical Fluxes in the Atmosphere’. Boundary-Layer Meteorol. 17 (1979) 187-202CrossRefGoogle Scholar
  31. Louis, J. F., Tiedtke, M., and Geleyn, J. F: 1982,‘A Short Story of the Operational PBL Parameterizations at ECMWF’, Proc. Workshop on Boundary Layer Parameterization, ECMWF, Reading, 59–79.Google Scholar
  32. L. Mahrt, lq Stratified Atmospheric Boundary Layers’. Boundary-Layer Meteorol. 90 (1999) 375-396CrossRefGoogle Scholar
  33. Mauritsen, T., Svensson, G., Enger, L., Zilitinkevich, S., and Grisogono, B.: 2004,‘Energy Similarity - A New Turbulence Closure Model for Stable Boundary Layers’, Preprints 16th AMS Conference on Boundary Layers and Turbulence, Portland, Maine, 9–13 August 2004.Google Scholar
  34. G. L. Mellor and T. Yamada, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’. J. Atmos. Sci. 31 (1974) 1791-1806CrossRefGoogle Scholar
  35. G. L. Mellor and T. Yamada, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’. Rev. Geophysics. Space. Phys. 20 (1982) 851-875CrossRefGoogle Scholar
  36. F. T. M. Nieuwstadt, ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’. J. Atmos. Sci. 41 (1984) 2202-2216CrossRefGoogle Scholar
  37. G. S. Poulos, W. Blumen, D. C. Fritts, J. K. Lundquist, J. Sun, S. P. Burns, C. Nappo, R. Banta, R. Newsom, J. Cuxart, E. Terradellas, B. Balsley and M. Jensen, ‘CASES-99: a comprehensive investigation of the Stable nocturnal boundary layer’. Bull. Amer. Meteorol. Soc. 83 (2002) 555-581CrossRefGoogle Scholar
  38. U. Schumann, ‘Subgrid Length-scales for Large-Eddy Simulation of Stratified Turbulence’. Theor. Comput. Fluid Dyn. 2 (1991) 279-290CrossRefGoogle Scholar
  39. Steeneveld, G. J., van der Wiel, B. J. H., and Holtslag, A. A. M.: 2006‘Modelling the Arctic Nocturnal Stable Boundary Layer and its Coupling to the Surface’, Boundary-Layer Meteorol. in press.Google Scholar
  40. Svensson, G., and Holtslag, A. A. M.: 2006‘Impact of Turbulence in the Stable Boundary Layer on the Synoptic Scale Flow’ Boundary-Layer Meteorol. in press.Google Scholar
  41. R. I. Sykes and D. S. Henn, ‘’Large-Eddy Simulation of Turbulent Sheared Convection. J. Atmos. Sci. 46 (1989) 1106-1118CrossRefGoogle Scholar
  42. H. Tennekes and J. L. Lumley, A First Course in Turbulence. Cambridge: MIT Press (1972).Google Scholar
  43. G. Therry and P. Lacarrére, ‘Improving the Eddy Kinetic Energy Model for Planetary Boundary Layer Description’. Boundary-Layer Meteorol. 25 (1983) 63-88CrossRefGoogle Scholar
  44. I. Troen and L. Mahrt, ‘A Simple Model of the Atmospheric Boundary Layer: sensitivity to surface evaporation’. Boundary-Layer Meteorol. 37 (1986) 129-148CrossRefGoogle Scholar
  45. P. Viterbo, A. C. M. Beljaars, J-F. Mahfouf and J. Teixeira, ‘The Representation of Soil Moisture Freezing and its Impact on the Stable Boundary Layer’. Quart. J. Roy. Meteorol. Soc. 125 (1999) 2401-2426CrossRefGoogle Scholar
  46. W. Weng and P. A. Taylor, ‘On Modelling the One-Dimensional Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 107 (2003) 371-400CrossRefGoogle Scholar
  47. Williams, A. G.: 2002,‘Local Mixing with External Control in the Met Office Unified Model Stable Boundary Layer’, Preprints 15th AMS Conference on Boundary Layers and Turbulence, Wageningen, The Netherlands, 15–19 July 2002, pp. 311–312.Google Scholar
  48. M. Xue, K. K. Drogemeier and V. Wong, ‘The Advanced Regional Prediction System (ARPS) – A Multi-Scale Non-Hydrostatic Atmospheric Simulation and Prediction Model Part I: Model Dynamics and Verification’. Meteorol. Atmos. Phys. 75 (2000) 161-193CrossRefGoogle Scholar
  49. T. Yamada, ‘The Critical Richardson Number and the Ratio of the Eddy Transport Coefficients Obtained from a Turbulence Closure Model’. J. Atmos. Sci. 32 (1975) 926-933CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • J. Cuxart
    • 1
  • A. A. M. Holtslag
    • 2
  • R. J. Beare
    • 3
  • E. Bazile
    • 4
  • A. Beljaars
    • 5
  • A. Cheng
    • 6
  • L. Conangla
    • 7
  • M. Ek
    • 8
  • F. Freedman
    • 8
  • R. Hamdi
    • 9
  • A. Kerstein
    • 10
  • H. Kitagawa
    • 11
  • G. Lenderink
    • 12
  • D. Lewellen
    • 13
  • J. Mailhot
    • 14
  • T. Mauritsen
    • 15
  • V. Perov
    • 16
  • G. Schayes
    • 9
  • G-J. Steeneveld
    • 2
  • G. Svensson
    • 15
  • P. Taylor
    • 17
  • W. Weng
    • 17
  • S. Wunsch
    • 10
  • K-M. Xu
    • 6
  1. 1.Dpt. FísicaUniv. de les Illes BalearsPalma de MallorcaSpain
  2. 2.Meteorology and Air Quality SectionWageningen UniversityWageningenThe Netherlands
  3. 3.Met OfficeLondonU.K
  4. 4.Météo-FranceToulouseFrance
  5. 5.European Centre for Medium-range Weather ForecastReadingU.K
  6. 6.NASA Langley Research CenterHamptonU.S.A
  7. 7.Dpt. Física AplicadaUniv. Polit‘ecnica de CatalunyaManresaSpain
  8. 8.NOAA-NCEPCamp SpringsU.S.A.
  9. 9.IAG G. LemaîtreUniversité Catholique de LouvainLouvain la neuveBelgium
  10. 10.Sandia National LaboratoriesLivermoreU.S.A
  11. 11.Japan Meteorological AgencyTokyoJapan
  12. 12.Royal Netherlands Met. InstituteKNMIde BiltThe Netherlands
  13. 13.West Virginia UniversityWVU.S.A
  14. 14.Meteorological Service of CanadaQuebecCanada
  15. 15.Dpt. MeteorologyStockholm UniversityStockholmSweden
  16. 16.Swedish Meteorological and Hydrological InstituteNorrkopingSweden
  17. 17.York UniversityYorkCanada

Personalised recommendations