Skip to main content
Log in

Spectral Structure of Small-Scale Turbulent and Mesoscale Fluxes in the Atmospheric Boundary Layer over a Thermally Inhomogeneous Land Surface

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Spectral analysis was performed on aircraft observations of a convective boundary layer (CBL) that developed over a thermally inhomogeneous, well-marked mesoscale land surface. The observations, part of the GAME-Siberia experiment, were recorded between April and June 2000 over the Lena River near Yakutsk City. A special integral parameter termed the ‘reduced depth of the CBL’ was used to scale the height of the mixed layer with variable depth. Analysis of wavelet cospectra and spectra facilitated the separation of fluxes and other variables into small-scale turbulent fluctuations (with scales less than the reduced depth of the CBL, approximately 2 km) and mesoscale fluctuations (up to 20 km). This separation approach allows for independent exploration of the scales. Analyses showed that vertical distributions obeyed different laws for small-scale fluxes and mesoscale fluxes (of sensible heat, water vapour, momentum and carbon dioxide) and for other variables (wind speed and air temperature fluctuations, coherence and degree of anisotropy). Vertical profiles of small-scale turbulent fluxes showed a strong decay that differed from generally accepted similarity models for the CBL. Vertical profiles of mesoscale fluxes and other variables clearly showed sharp inflections at the same relative (with respect to the reduced depth of the CBL) height of approximately 0.55 in the CBL. Conventional similarity models for sensible heat fluxes describe both small-scale turbulent and mesoscale flows. The present results suggest that mesoscale motions that reach up to the relative level of 0.55 could be initiated by thermal surface heterogeneity. Entrainment between the upper part of the CBL and the free atmosphere may cause mesoscale motions in that region of the CBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. D. Albertson M. B. Parlange (1999) ArticleTitle‘Natural Integration of Scalar Fluxes from Complex Terrain’ Adv. Water Resour. 23 239–252 Occurrence Handle10.1016/S0309-1708(99)00011-1

    Article  Google Scholar 

  • J.-L. Attie P. Durand (2003) ArticleTitle‘Conditional Wavelet Technique Applied to Aircraft Data Measured in Thermal Internal Boundary Layer during Sea-breeze Events’ Boundary-Layer Meteorol. 106 359–382

    Google Scholar 

  • Brutsaert, W. H.: 1982, ‘Evaporation into the Atmosphere’, D. Reidel, Dordrecht, 299 pp.

  • J. W. Deardorff (1970) ArticleTitle‘Convective Velocity and Temperature Scale for the Unstable Planetary Boundary Layer and for Rayleigh Convection’ J. Atmos. Sci. 27 1212–1213

    Google Scholar 

  • R. L. Desjardins J. I. MacPherson P. H. Schuepp F. Karanja (1989) ArticleTitle‘An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat’ Boundary-Layer Meteorol. 47 55–69 Occurrence Handle10.1007/BF00122322

    Article  Google Scholar 

  • Desjardins, R. L., MacPherson, J. I., Mahrt, L., Schuepp, P. H., Pattey, E., Neumann, H., Baldocchi, D., Wofsy, S., Fitzjarrald, D., McCaughey, H., and Joiner, D. W.: 1997, Scaling up flux measurements for the boreal forest using aircraft-tower observations’, J. Geophys. Res. 102, D24, 29,125–29,133.

    Google Scholar 

  • Flandrin, P.: 1988, ‘Time-frequency and Time-scale’, Proceedings of IEEE Fourth Annual ASSP Workshop on Spectrum Estimation and Modeling, Minneapolis, Minnesota, pp. 77–80.

  • A. Grossman J. Morlet (1984) ArticleTitle‘Decomposition of Hardy functions into square integrable wavelets of constant shape’ SIAM J. Math. Anal. 15 723–736

    Google Scholar 

  • T. Hiyama M.A. Strunin R. Suzuki J. Asanuma M.Y. Mezrin N.A. Bezrukova T. Ohata (2003) ArticleTitle‘Aircraft Observations of the Atmospheric Boundary Layer over a Heterogeneous Surface in Eastern Siberia’ Hydrol. Proc. 17 2885–2911 Occurrence Handle10.1002/hyp.1440

    Article  Google Scholar 

  • J. Hojstrup (1982) ArticleTitle‘Velocity Spectra in the Unstable Boundary Layer’ J. Atmos. Sci. 39 2239–2248

    Google Scholar 

  • Hudgins, L. H., Mayer, M. E. and Frieche, C. A.: 1993, ‘Fourier and Wavelet Analysis of Atmospheric Turbulence’, in Y. Meyer and S. Roques (eds.), Progress in Wavelet Analysis and Applications, Editions Frontiers, pp. 491–498.

  • J. C. Kaimal (1978) ArticleTitle‘Horizontal Velocity Spectra in an Unstable Surface Layer’ J. Atmos. Sci. 35 18–24 Occurrence Handle10.1175/1520-0469(1978)035<0018:HVSIAU>2.0.CO;2

    Article  Google Scholar 

  • J. C. Kaimal J. J. Finnigan (1994) Atmospheric Boundary Layer Flows, Their Structure and Measurements Oxford University Press Oxford 289

    Google Scholar 

  • J. C. Kaimal J. C. Wyngaard Y. Izumi (1972) ArticleTitle‘Spectral Characteristics of Surface-layer Turbulence’ Quart. J. Roy. Meteorol. Soc. 98 563–589 Occurrence Handle10.1256/smsqj.41706

    Article  Google Scholar 

  • Kumar, P. and Foufoula-Georgiou, E.: 1994, ‘Wavelet Analysis in Geophysics: An Introduction’, in Wavelet in Geophysics, Academic Press, Inc. pp. 1–43.

  • Lenschow, D. H.: 1972, ‘The Measurements of Air Velocity and Temperature Using the NCAR Buffalo Aircraft Measuring System’, Technical Note TN/STR-74, NCAR, Boulder, Colo, 39 pp.

  • D. H. Lenschow B. B. Stankov (1986) ArticleTitle‘Length Scale in the Convective Boundary Layer’ J. Atmos. Sci. 43 1198–1209 Occurrence Handle10.1175/1520-0469(1986)043<1198:LSITCB>2.0.CO;2

    Article  Google Scholar 

  • D. H. Lenschow J. Mann L. Kristensen (1994) ArticleTitle‘How Long is Long Enough When Measuring Fluxes and Other Turbulence Statistics’ J. Atmos. Oceanic Technol. 11 661–673 Occurrence Handle10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2

    Article  Google Scholar 

  • Lui, P. C.: 1994, ‘Wavelet Spectrum Analysis and Ocean Wind Waves’, in Wavelet in Geophysics, Academic Press, Inc. pp. 151–166.

  • MacPherson J. I. and Betts A. K.: 1997, ‘Aircraft Encounters with Strong Coherent Vortices over the Boreal Forest’, J. Geophys. Res. 102, D24, 29,231–29,234.

    Google Scholar 

  • L. Mahrt (2000) ArticleTitle‘Surface Heterogeneity and Vertical Structure of the Boundary Layer’ Boundary-Layer Meteorol. 96 33–62 Occurrence Handle10.1023/A:1002482332477

    Article  Google Scholar 

  • Mann, J. and Lenschow, D. H.: 1994, ‘Errors in Airborne Flux Measurements’, J. Geophys. Res. 99, D7, 14,519–14,526.

    Google Scholar 

  • M. Y. Mezrin (1997) ArticleTitle‘Humidity Measurements From Aircraft’ Atmos. Res. 44 53–59

    Google Scholar 

  • A. S. Monin A. M. Yaglom (1971) ‘Statistical Fluid Mechanics: Mechanics of Turbulence’ J. L. Lumley (Eds) English translation NumberInSeries1 MIT Press Cambrige, MA 789

    Google Scholar 

  • L. I. Petrova (1974) ArticleTitle‘‘Turbulent Heat and Momentum Fluxes in the Lower 300-m Atmospheric Layer under Convection’’ Trydu GGO 6 IssueID44 57–68

    Google Scholar 

  • E. R. Reiter A. Burns (1966) ArticleTitle‘The Structure of Clear-air Turbulence derived from “Topcat” Aircraft Measurements’ J. Atmos. Sci. 23 2 Occurrence Handle10.1175/1520-0469(1966)023<0206:TSOCAT>2.0.CO;2

    Article  Google Scholar 

  • Z. Sorbjan (1991) ArticleTitle‘Evaluation of Local Similarity Functions in the Convective Boundary Layer’ Boundary-Layer Meteorol. 30 1565–1583

    Google Scholar 

  • M. A. Strunin (1990) ArticleTitle‘‘Anisotropy of Wind Speed Pulses in Cloudy Atmosphere’’ Sov. Meteorol. Hydrol 6 28–35

    Google Scholar 

  • M. A. Strunin (1997) ArticleTitle‘Meteorological Potential for Contamination of Arctic Troposphere: Aircraft Measuring System for Atmospheric Turbulence and Methods for Calculations its Characteristics. Archive and Database of Atmospheric Turbulence’ Atmos. Res. 44 17–35

    Google Scholar 

  • M. A. Strunin T. Hiyama J. Asanuma T. Ohata (2004) ArticleTitle‘Aircraft Observations of the Development of Thermal Internal Boundary Layers and Scaling of the Convective Boundary Layer over Non-homogeneous Land Surfaces’ Boundary-Layer Meteorol. 111 491–522 Occurrence Handle10.1023/B:BOUN.0000016542.72958.e9

    Article  Google Scholar 

  • M. A. Strunin T. Hiyama (2004a) ArticleTitle‘Applying Wavelet Transforms to Analyse Aircraft-measured Turbulence and Turbulent Fluxes in the Atmospheric Boundary Layer over Eastern Siberia’ Hydrol. Proc. 18 3081–3098

    Google Scholar 

  • M. A. Strunin T. Hiyama (2004b) ArticleTitle‘Response Properties of Atmospheric Turbulence Measurement Instruments using Russian Research Aircraft’ Hydrol. Proc. 18 3099–3117

    Google Scholar 

  • R. B. Stull (1988) An Introduction to Boundary Layer Meteorology Kluwer Academic Publishers Dordrecht 666

    Google Scholar 

  • V. K. Vinnichenko N. Z. Pinus S. M. Shmeter G. N. Shur (1980) Turbulence in Free Atmosphere Consultants Bureau New York 310

    Google Scholar 

  • J. S. Walker (1997) ArticleTitle‘Fourier analysis and wavelet analysis’ Notices Amer. Math. Soc. 44 658

    Google Scholar 

  • Wyngaard, J. C.: 1973, ‘On Surface Layer Turbulence’, in D. A. Haugen (ed.), Workshop on Micrometeorology, Boston MA, Amer. Meteorol. Soc., pp. 101–149.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Hiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strunin, M.A., Hiyama, T. Spectral Structure of Small-Scale Turbulent and Mesoscale Fluxes in the Atmospheric Boundary Layer over a Thermally Inhomogeneous Land Surface. Boundary-Layer Meteorol 117, 479–510 (2005). https://doi.org/10.1007/s10546-005-2188-2

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-2188-2

Keywords

Navigation