Skip to main content
Log in

An Analytical Approach to Shear Dispersion and Tracer Age

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Solutions to the sheared Fickian advection–diffusion equation in a half-space with arbitrary surface source are given using a ‘transfer function’ method. The method uses Fourier transforms in two horizontal coordinates and time, along with complex Airy functions in the vertical coordinate. Surface deposition and tracer decay are included in the formulation. ‘Puff’ and steady ‘plume’ solutions are compared with Saffman’s moment formulae. The inclusion of a decay rate factor (α) allows the average tracer age to be computed from steady state solutions for concentration C(x, y, z) according to Age = − dln C/. A comparison between the puff centroid formula of Saffman and plume Age computations confirms that shear causes tracer puffs to accelerate horizontally as they diffuse upward into a different wind regime. In forward shear, tracer ages are younger than in unsheared flow but the range of ages is greater due to the existence of a high fast pathway and a low slow pathway. In reverse shear, concentrations, ages and the range of ages all rise markedly near the source. Large tracer age suggests that some tracer has taken a very distant path involving a low-level outbound trip and a high-level return. The effect of surface deposition is to reduce the influence of the distant path. In the case of reverse shear, deposition makes the tracer younger. In a turning wind, the time needed to reach a given radius increases due to the curved path of the plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Abramowitz I. A. Stegun (1972) ‘Handbook of Mathematical Functions’ EditionNumber3 Dover Publications New York 1046

    Google Scholar 

  • K. J. Allwine B. K. Lamb R. Eskridge (1992) ArticleTitle‘Wintertime Dispersion in a Mountainous Basin at Roanoke, Virginia: Tracer Study’ J. Appl. Meteorol. 31 1295–1311 Occurrence Handle10.1175/1520-0450(1992)031<1295:WDIAMB>2.0.CO;2

    Article  Google Scholar 

  • D. E. Amos (1986) ArticleTitle‘Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order’ ACM Trans. Math. Software 12 265–273

    Google Scholar 

  • F. Bowman (1958) Introduction to Bessel Functions Dover Publications New York 135

    Google Scholar 

  • B. M. Bowen J. A. Baars G. L. Stone (2000) ArticleTitle‘Nocturnal Wind Direction Shear and its Potential Impact on Pollutant Transport’ J. Appl. Meteorol. 39 437–445 Occurrence Handle10.1175/1520-0450(2000)039<0437:NWDSAI>2.0.CO;2

    Article  Google Scholar 

  • R. L. Buckley R. J. Kurzeja (1997) ArticleTitle‘An Observational and Numerical Study of the Nocturnal Sea Breeze Part II: Chemical Transport’ J. Appl. Meteorol. 36 1599–1619

    Google Scholar 

  • W. D. Crozier B. K. Seely (1955) ArticleTitle‘Concentration Distributions in Aerosol Plumes Three to Twenty two Miles from a Point Source’ Trans. Amer. Geophys. Union 36 42–50

    Google Scholar 

  • G. T. Csanady (1972) ArticleTitle‘Diffusion in an Ekman Layer’ J. Atmos. Sci. 26 414–426

    Google Scholar 

  • J. W. Dettman (1984) Applied Complex Variables Dover Publications New York 481

    Google Scholar 

  • F. A. Gifford (1995) ArticleTitle‘Some Recent Long-Range Diffusion Observations’ J. Appl. Meteorol. 34 1727–1730

    Google Scholar 

  • J. C. R. Hunt (1985) ArticleTitle‘Diffusion in the Stably Stratified Atmospheric Boundary Layer’ J. Appl. Meteorol. 24 1187–1195 Occurrence Handle10.1175/1520-0450(1985)024<1187:DITSSA>2.0.CO;2

    Article  Google Scholar 

  • J.-S. Lin L. M. Hildemann (1997) ArticleTitle‘A Generalized Mathematical Scheme to Analytically Solve the Atmospheric Diffusion Equation with Dry Deposition’ Atmos. Environ. 31 59–71

    Google Scholar 

  • A. K. Luhar (2002) ArticleTitle‘The Influence of Vertical Wind Direction Shear on Dispersion in the Convective Boundary Layer, and its Incorporation in Coastal Fumigation Models’ Boundary-Layer Meteorol. 102 1–38 Occurrence Handle10.1023/A:1012710118900

    Article  Google Scholar 

  • R. T. McNider M. D. Moran R. A. Pielke (1988) ArticleTitle‘Influence of Diurnal and Inertial Boundary-Layer Oscillations on Long Range Dispersion’ Atmos. Environ 22 2445–2462

    Google Scholar 

  • R. T. McNider M. P. Singh J. T. Lin (1993) ArticleTitle‘Diurnal Wind-Structure Variations and Dispersion in the Boundary Layer’ Atmos. Environ. 27 2199–2214

    Google Scholar 

  • Nahin, P. J.: 1998, An Imaginary Tale: The story of\(\sqrt{i}\). Princeton University Press, 257 pp.

  • F. Pasquill (1962) Atmospheric Diffusion Van Nostrand London 297

    Google Scholar 

  • M. I. Pekar’ (1989) ArticleTitle‘Effect of Wind Shear on the Dispersion of a Tracer’ Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 25 69–72

    Google Scholar 

  • P. G. Saffman (1962) ArticleTitle‘The Effect of Wind Shear on Horizontal Spread from an Instantaneous Ground Source’ Quart. J. Roy. Meteorol. Soc. 88 382–393

    Google Scholar 

  • Schumann, U., Konopka, P., Baumann, R., Busen, R., Gerz, T., Schlager, H., Schulte, P. and Volkert, P.: 1995, ‘Estimate of Diffusion Parameters of Aircraft Exhaust Plumes near the Tropopause from Nitric Oxide and Turbulence Measurements’, J. Geophys. Res., 100, D7, 14,147–14,162.

  • F. B. Smith (1965) ArticleTitle‘The Role of Wind Shear in Horizontal Diffusion of Ambient Particles’ Quart. J. Roy. Meteorol. Soc. 91 318–329

    Google Scholar 

  • R. B. Smith (2003) ArticleTitle‘Advection, Diffusion and Deposition from Distributed Sources’ Boundary-Layer Meteorol. 107 273–287 Occurrence Handle10.1023/A:1022174410745

    Article  Google Scholar 

  • W. C. Thacker (1976) ArticleTitle‘A Solvable Model of ‘Shear Dispersion’’ J. Phys. Oceanogr. 6 66–75 Occurrence Handle10.1175/1520-0485(1976)006<0066:ASMOD>2.0.CO;2

    Article  Google Scholar 

  • T Tirabassi U. Rizza (1997) ArticleTitle‘Boundary Layer Parameterization for a Non-Gaussian Puff Model’ J. Appl. Meteorol. 36 1031–1037 Occurrence Handle10.1175/1520-0450(1997)036<1031:BLPFAN>2.0.CO;2

    Article  Google Scholar 

  • C. J. Walcek (2002) ArticleTitle‘Effects of Wind Shear on Pollution Dispersion’ Atmos. Environ. 36 511–517 Occurrence Handle10.1016/S1352-2310(01)00383-1

    Article  Google Scholar 

  • W. Young S. Jones (1991) ArticleTitle‘Shear Dispersion’ Phys. Fluids A3 1087–1101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald B. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, R.B. An Analytical Approach to Shear Dispersion and Tracer Age. Boundary-Layer Meteorol 117, 383–415 (2005). https://doi.org/10.1007/s10546-005-1446-7

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-1446-7

Keywords

Navigation