Boundary-Layer Meteorology

, Volume 117, Issue 2, pp 337–381 | Cite as

‘Modelling the Arctic Boundary Layer: An Evaluation of Six Arcmip Regional-Scale Models using Data from the Sheba Project’

  • Michael Tjernström
  • Mark Žagar
  • Gunilla Svensson
  • John J. Cassano
  • Susanne Pfeifer
  • Annette Rinke
  • Klaus Wyser
  • Klaus Dethloff
  • Colin Jones
  • Tido Semmler
  • Michael Shaw
Article

Abstract

A primary climate change signal in the central Arctic is the melting of sea ice. This is dependent on the interplay between the atmosphere and the sea ice, which is critically dependent on the exchange of momentum, heat and moisture at the surface. In assessing the realism of climate change scenarios it is vital to know the quality by which these exchanges are modelled in climate simulations. Six state-of-the-art regional-climate models are run for one year in the western Arctic, on a common domain that encompasses the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment ice-drift track. Surface variables, surface fluxes and the vertical structure of the lower troposphere are evaluated using data from the SHEBA experiment. All the models are driven by the same lateral boundary conditions, sea-ice fraction and sea and sea-ice surface temperatures. Surface pressure, near-surface air temperature, specific humidity and wind speed agree well with observations, with a falling degree of accuracy in that order. Wind speeds have systematic biases in some models, by as much as a few metres per second. The surface radiation fluxes are also surprisingly accurate, given the complexity of the problem. The turbulent momentum flux is acceptable, on average, in most models, but the turbulent heat fluxes are, however, mostly unreliable. Their correlation with observed fluxes is, in principle, insignificant, and they accumulate over a year to values an order of magnitude larger than observed. Typical instantaneous errors are easily of the same order of magnitude as the observed net atmospheric heat flux. In the light of the sensitivity of the atmosphere–ice interaction to errors in these fluxes, the ice-melt in climate change scenarios must be viewed with considerable caution.

Keywords

Arctic climate Climate Climate model Numerical modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreas, E. L., Guest, P. S., Persson, P. O. G., Fairall, C. W., Horst, T. W., Moritz, R. E., and Semmer, S. R.: 2002, ‘Near-surface Water Vapor Over Polar Sea Ice is Always Near Ice Saturation: J. Geophys. Res. 107(C10), 10.1029/2000JC000411, 2002.Google Scholar
  2. Battisti, C. M., Bitz, C. M., Moritz, R. M. 1997‘Do General Circulation Models Underestimate the Natural Variability in the Arctic Climate?’J. Climate1019091920CrossRefGoogle Scholar
  3. Beesley, J. A., Bretherton, C. S., Jacob, C., Andreas, E. I., Intrieri, J. M., Uttal, T. A. 2000‘A Comparison of Cloud and Boundary Layer Variables in the ECMWF Forecast Model with Observations at the Surface Heat and Energy of the Arctic (SHEBA) ice camp’J. Geophys. Res.,1051233712349CrossRefGoogle Scholar
  4. Brinkop, S., Roeckner, E. 1995‘Sensitivity of a General Circulation Model to Parameterizations of Cloud–Turbulence Interactions in the Atmospheric Boundary Layer’Tellus47A197220Google Scholar
  5. Bromwich, D. H., Cassano, J. J., Klein, T., Heinemann, G., Hines, K. M., Steffen, K., Box, J. E. 2001‘Mesoscale Modeling of Katabatic Winds over Greenland with the Polar MM5’Mon. Wea. Rev.12922902309CrossRefGoogle Scholar
  6. Christensen, J. H., Christensen, O. B., Lopez, P., Van Meijgaard, E., and Botzet, A.: 1996, The HRIHAM4 regional atmospheric model. DNMI Sci. Rep. 96-4, Danish Meteorological Institute, Copenhagen, 51 pp.Google Scholar
  7. Christensen, J. H., Kuhry, P. 2000‘High-resolution Regional Climate Model Validation and Permafrost Simulation for the East European Russian Arctic’J. Geophys. Res.1052964729658CrossRefGoogle Scholar
  8. Cassano, J. J., Box, J. E., Bromwich, D. H., Li, L., Steffen, K. 2001‘Evaluation of Polar MM5 Simulations of Greenland’s Atmospheric Circulation’, J’Geophys. Res.1063386733890CrossRefGoogle Scholar
  9. Curry, J. A. 1986‘Interactions among Turbulence, Radiation and Microphysics in Arctic Stratus Clouds’J. Atmos. Sci.4390106Google Scholar
  10. Curry, J. A., Hobbs, P. V., King, M. D., Randall, D. A., Minnis, P., Isaac, G. A., Pinto, J. O., Uttal, T., Bucholtz, A., Cripe, D. G., Gerber, H., Fairall, C. W., Garrett, T. J., Hudson, J., Intrieri, J. M., Jakob, C., Jensen, T., Lawson, P., Marcotte, D., Nguyen, L., Pilewskie, P., Rangno, A., Rogers, D. C., Strawbridge, K. B., Valero, F. P. J., Williams, A. G., Wylie, D. 2000‘FIRE Arctic Clouds Experiment’Bull. Amer. Meteorol. Soc.81529Google Scholar
  11. Curry, J. A., Lynch, A. H. 2002‘Comparing Arctic Regional Climate Models’EOS Trans.8387Google Scholar
  12. Cuxard, J., Bougeault, P., Redelberger, J. L. 2000‘A Turbulence Scheme Allowing for Mesoscale and Large-eddy Simulations’Quart. J. Roy. Meteorol. Soc.126130Google Scholar
  13. Dethloff, K. C., Abegg, C., Rinke, A., Hebestadt, I., Romanov, V. 2001‘Sensitivity of Arctic Climate Simulations to Different Boundary-layer Parameterizations in a Regional Climate Model’Tellus53A126Google Scholar
  14. Hanna, S. R. 1994

    ‘Mesoscale Meteorological Model Evaluation Techniques with Emphasis on Needs of Air Quality Models’

    Pielke, R. A.Pearce, R. P. eds. Mesoscale modeling of the Atmosphere, Meteorological MonographsAmerican Meteorological SocietyBoston, USA4762
    Google Scholar
  15. Hodur, R. M. 1997‘The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)’Mon. Wea. Rev.12514141430Google Scholar
  16. Holton, J. R. 1992An Introduction to Dynamic MeteorologyAcademic PressSan Diego, U.S.A511Google Scholar
  17. Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas, E. L., Guest, P. S., and Moritz, R. E.: 2002, ‘An annual cycle of Arctic surface cloud forcing at SHEBA, J. Geophys. Res. 107(C10), 8039, doi:10.1029/2000JC000439, 2002.Google Scholar
  18. IPCC: 2001, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Ding, Y., Griggs, D.J. Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., and Johnson C.A. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, U.S.A, 881 pp.Google Scholar
  19. Jacob, D. 2001‘A Note to the Simulation of Annual and Interannual Variability of the Water Budget over the Baltic Sea drainage basin’Meteorol. Atmos. Phys.776173Google Scholar
  20. Jones, C. G., Wyser, K., Ullerstig, A., and Willén, U.: 2004, ‘The Rossby Center Regional Atmospheric Climate Model. Part II: Application to the Arctic’, Ambio, in press.Google Scholar
  21. Key, J. 2002The Cloud and Surface Parameter Retrieval (CASPR) System for Polar AVHRRCooperative Institute for Meteorological Satellite Studies. University of WisconsinMadison59Google Scholar
  22. Leck, C., Tjernström, M., Bigg, K., Matrai, P., Swetlicki, E. 2004‘Microbes, Clouds and Climate: Can Marine Microorganisms Influence the Melting of the Arctic pack ice?’Eos Trans.852536Google Scholar
  23. Liu, J., Curry, J., Rossow, W., Key, J., Wang, X. 2005‘Comparison of Surface Radiative Flux Data Sets over the Arctic Ocean’J. Geophys. Res.110C02015Google Scholar
  24. Louis, J. F. 1979‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’Boundary-Layer Meteorol17187202CrossRefGoogle Scholar
  25. Lynch, A. H., Chapman, W. L., Walsh, J. E., Weller, G. 1995‘Development of a Regional Climate Model of the Western Arctic’J. Climate815551570CrossRefGoogle Scholar
  26. Meehl, G. A., Boer, G. J., Covey, C., Latif, M., Stouffer, R. J. 2000‘The Coupled Model Intercomparison Project (CMIP)’Bull. Amer. Meteorol. Soc.81313318Google Scholar
  27. Mahrt, L. 1998‘Stratified Atmospheric Boundary Layers and Breakdown of Models’Theoret. Comput. Fluid Dynamics11263279CrossRefGoogle Scholar
  28. Mellor, G., Yamada, T. 1974‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’J. Atmos. Sci.3117911806CrossRefGoogle Scholar
  29. Mellor, G. L., Yamada, T. 1982‘Development of a Closure Model of Geophysical Flows’Rev. Geophys. Space Physics20851875Google Scholar
  30. Overland, J. E., McNutt, S. L., Groves, J., Salo, S., Andreas, E. L., Persson, P. O. G. 2000‘Regional Sensible and Radiative Heat Flux Estimates for the Winter Arctic during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment’J. Geophys. Res.1051409314102CrossRefGoogle Scholar
  31. Perovich, D. K., Andreas, E. L., Curry, J. A., Eiken, H., Fairall, C. W., Grenfell, T. C., Guest, P. S., Intrieri, J., Kadko, D., Lindsay, R. W., McPhee, M. G., Morison, J., Moritz, R. E., Paulson, C. A., Pegau, W. S., Persson, P.O.G., Pinkel, R., Richter-Menge, J. A., Stanton, T., Stern, H., Sturm, M., Tucker, W. B., Uttal, T. 1999‘Year on Ice Gives Climate Insights’Eos Trans.80483486Google Scholar
  32. Persson, P. O. G., Uttal, T., Intrieri, J. M., Fairall, C. W., Andreas, E. L., and Guest, P. S.: 1999, ‘Observations of Large Thermal Transitions during the Arctic Night from a Suite of sensors at SHEBA. Preprints, 3rd Symp. on Integrated Observing Systems., Jan. 10–15, 1999, Dallas, TX, 171–174.Google Scholar
  33. Persson, P. Ola G., Fairall, C. W., Andreas, E. L., Guest, P. S., and Perovich, D. K.: 2002, ‘Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface Conditions and Surface Energy Budget’, J. Geophys. Res. 107(C10), 8045, doi:10.1029/2000JC000705, 2002.Google Scholar
  34. Pinto, O. J., Curry, J. A., Lynch, A. H. 1999‘Modeling Clouds and Radiation for the November 1997 Period of SHEBA Using a Column Climate Model’J. Geophys. Res.10466616678Google Scholar
  35. Randall, D. A., Wielicki, B. A. 1997‘Measurements, Models, and Hypotheses in the Atmospheric Sciences’Bull. Amer. Meteorol. Soc.78399399Google Scholar
  36. Randall, D. A., Krueger, S., Bretherton, C., Curry, J., Duynkerke, P., Moncrieff, M., Ryan, B., Starr, D., Miller, M., Rossow, W., Tselioudis, G., Wielicki, B. 2003‘Confronting Models with Data: The GEWEX Cloud Systems Study’Bull. Amer. Meteorol. Soc.84455469Google Scholar
  37. Räisänen, J. 2001‘CO2-induced Climate Change in the Arctic area in the CMIP2 Experiments’SWECLIM Newsletter112328Google Scholar
  38. Rinke, A., Dethloff, K., Christensen, J. H. 1999‘Arctic Winter Climate and its Interannual Variation Simulated by a Regional Model’J. Geophys. Res.1041902719038CrossRefGoogle Scholar
  39. Rinke, A., Lynch, A. H., Dethloff, K. 2000‘Intercomparison of Arctic Regional Climate Simulations: Case Studies of January and June 1990’J. Geophys. Res.1052966929683CrossRefGoogle Scholar
  40. Rinke, A., Gerdes, R., Dethloff, K., Kandlbilder, T., Karcher, M., Frickenhaus, S., Koeberle, C., and Hiller, W.: 2003, ‘A Case Study of the Anomalous Arctic Sea Ice Conditions during 1990: Insights from Coupled and Uncoupled Climate Model Simulations’, J. Geophys. Res. 108(D9), 4275, doi:10.1029/2002JD003146, 2003.Google Scholar
  41. Tjernström, M. 2005‘The Summer Arctic Boundary Layer during the Arctic Ocean Experiment 2001 (AOE-2001)’Boundary-Layer Meteorol.117536Google Scholar
  42. Tjernström, M., Leck, C., Persson, P. O. G., Jensen, M. L., Oncley, S. P., Targino, A. 2004‘The Summertime Arctic Atmosphere: Meteorological Measurements during the Arctic Ocean Experiment 2001 (AOE-2001)’Bull. Amer. Meteorol. Soc.8513051321Google Scholar
  43. Vihma, T., Hartman, J., Lûpkes, C. 2003‘A Case Study of an On-Ice Flow Over the Arctic Marginal Sea Ice Zone’Boundary-Layer Meteorol107189217CrossRefGoogle Scholar
  44. Walsh, J. E., Kattsov, W. M., Chapman, W. L., Govorkova, V., Pavlova, T. 2002‘Comparison of Arctic Climate by Uncoupled and Coupled Global Models’J. Climate1514291446CrossRefGoogle Scholar
  45. Zilitinkevich, S. S. 2002‘Third-order Transport due to Internal Waves and non-local Turbulence in the Stably Stratified Surface Layer’Quart. J. Roy. Meteorol. Soc.128913926Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Michael Tjernström
    • 1
  • Mark Žagar
    • 1
  • Gunilla Svensson
    • 1
  • John J. Cassano
    • 2
  • Susanne Pfeifer
    • 5
  • Annette Rinke
    • 4
  • Klaus Wyser
    • 3
  • Klaus Dethloff
    • 4
  • Colin Jones
    • 3
  • Tido Semmler
    • 5
  • Michael Shaw
    • 4
  1. 1.Department of MeteorologyStockholm UniversityStockholmSweden
  2. 2.Cooperative Institute for Research in the Environmental Sciences and Program in Atmospheric and Oceanic SciencesUniversity of ColoradoBOU.S.A
  3. 3.Alfred Wegener Institute for Polar and Marine ResearchPostdamGermany
  4. 4.Swedish Meteorological and Hydrological InstituteNorrköpingSweden
  5. 5.Max-Planck Institute for MeteorologyHamburgGermany

Personalised recommendations