Skip to main content
Log in

Observations of the Relation Between Upslope Flows and the Convective Boundary Layer in Steep Terrain

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Slope flow mechanisms are crucial for the transport of air pollutants in complex terrain. Previous observations in sloping terrain showed upslope flows filling the entire convective boundary layer (CBL) and reducing air pollution concentrations by venting air pollutants out of the CBL into the free atmosphere. During the Pacific 2001 Air Quality Field Study in the Lower Fraser Valley, British Columbia, Canada, we observed slope flows during weak synoptic winds, clear skies, and strong daytime solar heating. With a Doppler sodar we measured the three wind components at the foot of a slope having an average angle of 19° and a ridge height of 780 m. We operated a scanning lidar system and a tethersonde at a nearby site on the adjacent plain to measure backscatter of particulate matter, temperature, wind speed, wind direction, and specific humidity. Strong daytime upslope flows of up to 6 m s−1 through a depth of up to 500 m occurred in the lower CBL, but with often equally strong and deep return flows in the upper part of the CBL. The mass transport of upslope flow and return flow approximately balanced over a 4-h morning period, suggesting a closed slope-flow circulation within the CBL. These observations showed that air pollutants can remain trapped within a CBL rather than being vented from the CBL into the free atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B.W. Atkinson (1981) Meso-scale Atmospheric Circulations Academic Press London 495

    Google Scholar 

  • R.M. Banta (1984) ArticleTitleDaytime Boundary-Layer Evolution over Mountainous Terrain. Part I: Observations of the Dry Circulations Mon. Wea. Rev 112 340–356

    Google Scholar 

  • M. Brehm (1986) Experimentelle und numerische Untersuchungen der Hangwindschicht und ihre Rolle bei der Erwärmung von Tälern. Ph.D. Dissertation Ludwig-Maximilians-Universität München Germany 173

    Google Scholar 

  • R.-R. Chen N.S. Berman D.L. Boyer H.J.S. Fernando (1996) ArticleTitlePhysical Model of Diurnal Heating in the Vicinity of a Two-dimensional Ridge J. Atmos. Sci 53 62–85

    Google Scholar 

  • B. Davidson (1963) ArticleTitleSome Turbulence and Wind Variability Observations in the Lee of Mountain Ridges J. Appl. Meteorol 2 463–472

    Google Scholar 

  • J.W. Deardorff G.E. Willis (1987) ArticleTitleTurbulence within a Baroclinic Laboratory Mixed Layer above a Sloping Surface J. Atmos. Sci 44 772–778

    Google Scholar 

  • Defant, F. (1949). Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch. Met. Geoph. Biokl., Ser. A 1: 421–450. English in: Whiteman, C. D. and Dreiseitl, E. (1984). Alpine Meteorology. Translations of Classic Contributions by A. Wagner, E. Ekhart and F. Defant. Pacific Northwest Laboratory, Richland, Washington, pp. 95-121

  • S. Wekker Particlede (1997) The Behaviour of the Convective Boundary Layer Height over Orographically Complex Terrain. Master Thesis, Universität Karlsruhe Germany and Wageningen Agricultural University The Netherlands 295

    Google Scholar 

  • S. Wekker Particlede (2003) Structure and Morphology of the Convective Boundary Layer in Mountainous Terrain. Ph.D. Dissertation The University of British Columbia Canada 191

    Google Scholar 

  • J. Egger (1981) ArticleTitleOn the Linear Two-dimensional Theory of Thermally Induced Slope Winds Beitr. Phys. freien Atmos 54 465–481

    Google Scholar 

  • T. Haiden (1990) Analytische Untersuchungen zur konvektiven Grenzschicht im Gebirge. Ph.D. Dissertation Universität Wien Austria 140

    Google Scholar 

  • L.K. Ingel’ (2000) ArticleTitleNonlinear Theory of Slope Flows Izvestiya Atmos. Ocean. Phys 36 384–389

    Google Scholar 

  • H. Kondo (1984) ArticleTitleThe Difference of the Slope Wind Between Day and Night J. Meteorol. Soc. Japan 62 224–232

    Google Scholar 

  • M. Koßmann (1998) Einfluß orographisch induzierter Transportprozesse auf die Struktur der atmosphärischen Grenzschicht und die Verteilung von Spurengasen. Ph.D. Dissertation Fakultät für Physik der Universität Karlsruhe (TH) Karlsruhe 193

    Google Scholar 

  • T. Kuwagata J. Kondo (1989) ArticleTitleObservations and Modeling of Thermally Induced Upslope Flow Boundary-Layer Meteorol 49 265–293

    Google Scholar 

  • S.-M. Li (2004) ArticleTitleA Concerted Effort to Understand the Ambient Particulate Matter in the Lower Fraser Valley: The Pacific 2001 Air Quality Study Atmos. Environ 38 5719–5731 Occurrence Handle1:CAS:528:DC%2BD2cXnvVeqs7g%3D

    CAS  Google Scholar 

  • B. Mendonca (1969) ArticleTitleLocal Wind Circulation on the Slopes of Mauna Loa J. Appl. Meteorol 8 533–541

    Google Scholar 

  • S. Mitsumoto (1989) ArticleTitleA Laboratory Experiment on the Slope Wind J. Meteorol. Soc. Japan 67 565–574

    Google Scholar 

  • W.D. Neff (1990) Remote Sensing of Atmospheric Processes over Complex Terrain W. Blumen (Eds) Atmospheric Processes Over Complex Terrain. Meteorological Monographs 23(45) American Meteorological Society Boston 173–228

    Google Scholar 

  • H.D. Orville (1964) ArticleTitleOn Mountain Upslope Winds J. Atmos. Sci 21 622–633

    Google Scholar 

  • Z. Petkovšek (1982) ArticleTitleEin einfaches Modell des Tages-Hangwindes Zeits. Meteorol 32 31–41

    Google Scholar 

  • L. Prandtl (1942) Führer durch die Ströhmungslehre. Vieweg, Braunschweig English: Essentials of Fluid Dynamics. Blackie London 452

    Google Scholar 

  • C. Reuten D.G. Steyn K.B. Strawbridge P. Bovis (2002) ArticleTitleAir Pollutants Trapped in Slope Flow Systems Bull. Amer. Meteorol. Soc 83 966

    Google Scholar 

  • U. Schumann (1990) ArticleTitleLarge-eddy Simulation of the Upslope Boundary Layer Quart. J. Roy. Meteorol. Soc 116 637–670

    Google Scholar 

  • M. Segal Y. Ookouchi R.A. Pielke (1987) ArticleTitleOn the Effect of Steep Slope Orientation on the Intensity of Daytime Upslope Flow J. Atmos. Sci 44 3587–3592

    Google Scholar 

  • D.G. Steyn D.A. Faulkner (1986) ArticleTitleThe Climatology of Sea-Breezes in the Lower Fraser Valley, BC Climatol. Bull 20 21–39

    Google Scholar 

  • D.G. Steyn J.W. Bottenheim R.B. Thompson (1997) ArticleTitleOverview of Tropospheric Ozone in the Lower Fraser Valley, and the Pacific ’93 Field Study Atmos. Environ 31 2025–2035 Occurrence Handle1:CAS:528:DyaK2sXjsl2mt74%3D

    CAS  Google Scholar 

  • K.B. Strawbridge B.J. Snyder (2004) ArticleTitlePlanetary Boundary Layer Height Determination during Pacific 2001 Using the Advantage of a Scanning Lidar Instrument Atmos. Environ 38 5861–5871 Occurrence Handle1:CAS:528:DC%2BD2cXnvVeqsLk%3D

    CAS  Google Scholar 

  • I. Vergeiner (1982) ArticleTitleEine energetische Theorie der Hangwinde. 17. Int. Tag. Alpine Meteorol.. Berchtesgaden, 1982 Ann. Meteorol 19 189–191

    Google Scholar 

  • I. Vergeiner (1991) ArticleTitleComments on ‘Large-Eddy Simulation of the Up-Slope Boundary Layer’ by Ulrich Schumann (April 1990, 116, 637-670) Quart. J. Roy. Meteorol. Soc 117 1371–1372

    Google Scholar 

  • B. Vogel G. Adrian F. Fiedler (1987) MESOKLIP – Analysen der Meteorologischen Beobachtungen von Mesoskaligen Phänomenen im Oberrheingraben Inst. für Meteorologie Klimaforschung der Univ. Karlsruhe Germany 369

    Google Scholar 

  • R. Wenger (1923) ArticleTitleZur Theorie der Berg- und Talwinde Meteorol. Zeits 40 193–204

    Google Scholar 

  • C.D. Whiteman (2000) Mountain Meteorology Fundamentals and Applications. Oxford University Press New York 355

    Google Scholar 

  • G.L. Wooldridge E.L. McIntyre SuffixII (1986) ArticleTitleThe Dynamics of the Planetary Boundary Layer over a Heated Mountain Slope Geofizika 3 3–21

    Google Scholar 

  • Z.J. Ye M. Segal R.A. Pielke (1987) ArticleTitleEffects of Atmospheric Thermal Stability and Slope Steepness on the Development of Daytime Thermally Induced Upslope Flow J. Atmos. Sci 44 3341–3354

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Reuten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuten, C., Steyn, D.G., Strawbridge, K.B. et al. Observations of the Relation Between Upslope Flows and the Convective Boundary Layer in Steep Terrain. Boundary-Layer Meteorol 116, 37–61 (2005). https://doi.org/10.1007/s10546-004-7299-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-7299-7

Keywords

Navigation