Skip to main content

Advertisement

Log in

Determining the optimal soil temperature scheme for atmospheric modelling applications

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The treatment of the land surface can have a significant impact on the performance of atmospheric models, influencing the surface energy balance and near surface atmospheric variables. In numerical weather prediction models it is especially important to reproduce the observed diurnal cycle in screen-level temperature, which requires an accurate representation of the surface temperature, and therefore an accurate and computationally efficient representation of soil heat storage and transfer. We present a technique for analysing the accuracy of numerical soil temperature schemes, and a methodology for choosing the optimal layer thicknesses for schemes with a given number of layers. Furthermore, the analysis suggests that first generation land surface schemes, which typically used a layer-average surface temperature, may be more accurate in this respect than the latest land surface schemes, which tend to use a ‘skin’ surface temperature boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Best (1998) ArticleTitle‘A Model to Predict Road Surface Temperatures’ Boundary-Layer Meteorol 88 279–306

    Google Scholar 

  • Best, M. J., Bornemann, F. J., Chalcraft, B. V., and Wilson, C. A.: 2000, Mesoscale Model Upgrade – Introduction of the Land Surface Tile Scheme (MOSES 2), Forecasting Research Technical Report 341, Met Office, Bracknell, U.K.

  • T. H. Chen A. Henderson-Sellers P. C. D. Milly A. J. Pitman A. C. M. Beljaars J. Polcher F. Abramapoulos A. Boone S. Chang F. Chen Y. Dai C. E. Desborough R. E. Dickenson L. Dumenil M. Ek J. R. Garratt N. Gedney Y. M. Gusev J. Kim R. Koster E. A. Kowalczyk K. Laval J. Lean D. Lettenmaier X. Liang J. F. Mahfouf H. T. Mengelkamp K. Mitchell O. N. Nasonova J. Noilhan A. Robock C. Rosenzweig J. Schaake C. A. Schlosser J. P. Schulz Y. Shao A. B. Schmakin D. L. Verseghy P. Wetzel E. F Wood Y. Xue Z. L. Yang Q. Zeng (1997) ArticleTitle‘Cabauw Experimental Results from the Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS)’ J. Climate 10 1194–1215

    Google Scholar 

  • Cox, P. M.: 1991, ‘Adaptation of the Soil Temperature Model to Accommodate the Penman–Monteith Approach to Surface Energy Balance’, Internal Note 7, Hadley Centre, UK Met Office, London Road, Bracknell, Berks RG12 2SY, U.K.

  • P. M. Cox R. A. Betts C. B. Bunton R. L. H. Essery P. R. Rowntree J. Smith (1999) ArticleTitle‘The Impact of New Land Surface Physics on the GCM Simulation of Climate and Climate Sensitivity’ Clim. Dyn 15 183–203

    Google Scholar 

  • J. Deardorff (1978) ArticleTitle‘Efficient Prediction of Ground Surface Temperature and Moisture with Inclusion of a Layer of Vegetation’ J. Geophys. Res 83 1889–1903

    Google Scholar 

  • N. Ducoudre K. Laval A. Perrier (1993) ArticleTitle‘SECHIBA, A New Set of Parameterisations of the Hydrological Exchanges at the Land/Atmosphere Interface with the LMD Atmospheric General Circulation Model’ J. Climate 6 248–273

    Google Scholar 

  • A. Grant (1994) ArticleTitle‘Wind Profiles in the Stable Boundary Layer, and the Effect of Low Relief’ Quart. J. Roy. Meteorol. Soc 120 27–46

    Google Scholar 

  • I. Jacobsen E. Heise (1982) ArticleTitle‘A New Economic Method for the Computation of the Surface Temperature in Numerical Models’ Beitr. Phys. Atmosph 55 128–141

    Google Scholar 

  • M. Jin R. Dickinson A. Vogelmann (1997) ArticleTitle‘A Comparison of CCM2-BATS Skin Temperature and Surface-Air Temperature with Satellite and Surface Observations’ J. Climate 10 1505–1524

    Google Scholar 

  • M. D. Novak T. A. Black (1983) ArticleTitle‘The Surface Heat Flux Density of a Bare Soil’ Atmos. Ocean 21 431–443

    Google Scholar 

  • M. D. Novak T. A. Black (1985) ArticleTitle‘Theoretical Determination of the Surface Energy Balance and Thermal Regimes of Bare Soils’ Boundary-Layer Meteorol 33 313–333

    Google Scholar 

  • C. Schlosser A. Slater A. Robock A. J. Pitman K. Y. Vinnikov A. Henderson-Sellers N. Speranskaya K. Mitchell InstitutionalAuthorNamePILPS 2d Contributors (2000) ArticleTitle‘Simulations of a Boreal Grassland Hydrology at Valdai, Russia: PILPS Phase 2(d)’ Mon. Wea. Rev 128 301–321

    Google Scholar 

  • Y. Shao A. Henderson-Sellers InstitutionalAuthorNameContributors, P. (1996) ArticleTitle‘Modeling Soil Moisture: A Project for Intercomparison of Land Surface Parameterization Scheme Phase 2(b)’ J. Geophys. Res. Atmos 101 IssueIDD3 7227–7250

    Google Scholar 

  • D. Verseghy N. McFarlane M. Lazare (1991) ArticleTitle‘CLASS – A Canadian Land Surface Scheme for GCMs. Part I: Soil model’ Int. J. Climatol 11 111–133

    Google Scholar 

  • P. Viterbo A. Beljaars (1995) ArticleTitle‘An Improved Land Surface Parameterisation Scheme in the ECMWF Model and its Validation’ J. Climate 8 2716–2748

    Google Scholar 

  • Warrilow, D. A., Sangster, A. B., and Slingo, A.: 1986, ‘Modelling of Land Surface Processes and their Influence on European Climate’, Dynamical Climatology Technical Note 38, UK Met Office, London Road, Bracknell, Berks RG12 2SY, U.K.

  • Y. Xue P. Sellers J. Kinter J. Shukla (1991) ArticleTitle‘A Simplified Biosphere Model for Climate Studies’ J. Climate 4 345–364

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Best.

Additional information

The British Crown’s right to retain a non-exclusive royalty-free license in and to any copyright is acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Best, M.J., Cox, P.M. & Warrilow, D. Determining the optimal soil temperature scheme for atmospheric modelling applications. Boundary-Layer Meteorol 114, 111–142 (2005). https://doi.org/10.1007/s10546-004-5075-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-5075-3

Keywords

Navigation